• Title/Summary/Keyword: HepG2

Search Result 1,126, Processing Time 0.025 seconds

Ameliorate Effect of Black Ginseng on HepG2 Cell transplanted in BALB/c Nude Mice (HepG2 세포주를 이식한 BALB/c Nude Mice에서 흑삼의 고형암 개선효과)

  • Kang, Shin-Jyung;Han, Jung-Soon;Kim, Ae-Jung
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.2
    • /
    • pp.241-246
    • /
    • 2015
  • The aim of this study was to examine the ameliorating effect of black ginseng on the growth of the HepG2 cell transplanted tumor in BALB/c nude mice. 27 male BALB/c nude mice (all six weeks old) were randomly divided into three groups: the control group, the first treatment group (HepG2300RG, using 300 mg/kg red ginseng), and the second treatment group (HepG2300BG, using 300 mg/kg black ginseng). The HepG2300BG in the HePG2 cells showed increased mean survival time than that of red ginseng group. The size and volume of the tumor in the 300BG group showed significant reduction compared to those of the HepG2300RG group (p<0.05). The body weight and liver weight of the HepG2300RG group was not significantly different with control and HepG2300BG group. The serum levels of ALT and AST in the HepG2300RG and HepG2300BG group were significantly lower than those of the control group. In conclusion, these results suggest that the black ginseng may have possible anti-tumor activities.

Effects of Cholic Acid/CDCA and FGF-19 on the Protein Levels of the Endogenous Small Heterodimer Partner (SHP) in the Mouse Liver and HepG2 Cells (생쥐의 간과 HepG2 세포에 있어서 내인성 small heterodimer partner (SHP)의 단백질 수준에 미치는 cholic acid/CDCA 및 FGF-19의 효과)

  • Min, Gye-Sik
    • Journal of Life Science
    • /
    • v.19 no.12
    • /
    • pp.1731-1736
    • /
    • 2009
  • Recent studies determined that a chronic western-style diet increased the endogenous small heterodimer partner (SHP) protein levels in mice. In experiments with cell cultures, chenodeoxy cholic acid (CDCA) treatment increased endogenous SHP protein levels and reduced the degradation rate of exogenously expressed flag-SHP levels in the human hepatoma cell line, HepG2 cells. In addition, bile acid-induced intestinal fibroblast growth factor-19 (FGF-19) increased the half-life of the exogenously expressed SHP when HepG2 cells were transfected with ad-flag-SHP. However, both the expression level and the degradation rate of the endogenous SHP in response to cholic acid and FGF-19 have not been well understood, either in mice or in cultured HepG2 cells. This study examined the effects of cholic acid treatment on the endogenous SHP protein levels in mice and the effects of FGF-19 on the degradation rate of the endogenous SHP protein in HepG2 cells. Mice fed 0.5% cholic acid in normal chow showed an increase in endogenous SHP protein levels during both 12 hr and 24 hr treatment periods as compared to control mice fed only normal chow. In cultured HepG2 cells, treatment with CDCA did not noticeably change the rate of degradation in the endogenous SHP protein from cells not treated with CDCA. Although consistent with the previous studies on the exogenous ad-flag-SHP protein, treatment with FGF-19 significantly decreased the degradation rate of the endogenous SHP protein when HepG2 cells were treated with cyclohexamide. These results suggest that both bile acids and FGF-19 increase the endogenous SHP protein levels in mouse liver and HepG2 cells.

[ $2{\beta}$ ], $3{\alpha}$, 23-trihydroxyrus-12-ene-28-oic Acid Induces the Apoptosis of Human Hepatoma HepG2 Cells ($2{\beta}$, $3{\alpha}$, 23-trihydroxyrus-12-ene-28-oic acid처리에 의한 인간 간암세포주 HepG2의 apoptosis 유도)

  • Yoo, Ki-Hyun;Lee, Jong-Min;HwangBo, Jeon;Song, Myoung-Chong;Yang, Hye-Joung;Baek, Nam-In;Kim, Soung-Hoon;Kim, Dae-Keun;Kwon, Byoung-Mok;Park, Mi-Hyun;Chung, In-Sik
    • Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.270-275
    • /
    • 2006
  • [ $2{\beta},\;3{\alpha}$ ], 23-trihydroxyrus-12-ene-28-oic acid was isolated from Trapa pseudoincisa S. et Z. It has a common structure of pentacyclic triterpenes and belongs to the amyrin ursolic acid group. The cytotoxic effect of this compound was investigated in human hepatoma cell line HepG2. $2{\beta},\;3{\alpha}$, 23-trihydroxyrus-12-ene-28-oic acid showed dose-dependent cytotoxicity in HepG2 cells. Confocal microscopy data showed that green fluorescence was increased in $2{\beta},\;3{\alpha}$, 23-trihydroxyrus-12-ene-28-oic acid treated-HepG2 cells in a time-dependent manner. $2{\beta},\;3{\alpha}$, 23-trihydroxyrus-12-ene-28-oic acid also increased the sub-G1 cell population of HepG2 cells as well as ladder-like DNA fragmentation. Taken together, our results indicate that $2{\beta},\;3{\alpha}$, 23-trihydroxyrus-12-ene-28-oic acid induced apoptosis in HepG2 cells.

The Apoptosis-inducing Effect of Radix Aconiti Extract in HepG2 Human Hepatoma Cells (HepG2 간암세포에 대한 부자 추출물의 고사 유도 효과)

  • 권강범;김은경;정은실;심정섭;김강산;신병철;송용선;류도곤
    • The Journal of Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.33-40
    • /
    • 2004
  • Objective : This study investigated the apoptotic effect and its mechanism of Radix Aconiti (RA) extract and aconitine, which is a major constituent of RA, in HepG2 human hepatoma cells. Methods : We used MTT and DNA fragmentation assay to investigate cell viability and apoptotic effect on RA extract-treated HepG2 cells. In addition, to clarify the mechanism of RA extract-induced apoptosis, we applied caspase-3 enzyme activity assay and Western blotting method on poly-(ADP-ribose) polymerase (PARP) protein expression. Results : Treatment with RA extract resulted in the decrease of cell viability, and this effect was caused from apoptosis as confirmed by discontinuous fragmentation of DNA in HepG2 cells, but aconitine did not. Also, RA extract-treated HepG2 cells induced the activation of caspase-3 enzyme activity in time- and dose-dependent manners, which was accompanied by the cleavage of 116 kD PARP to 85 kD product. Conclusions : These results suggest that the apoptotic effects of RA extract on HepG2 cells could not be explained by aconitine. Additionally, RA extract induced apoptosis in hepatoma cells through caspase-3 activation and subsequent PARP cleavage.

  • PDF

Anti-proliferating Effects and Gene Expression Profiles through Antioxidant Activity of Porphyra yezoensis Fractions on Human HepG2 Cell Lines (인간 간암세포주 HepG2에서 김 분획물의 항산화 활성을 통한 증식 억제 및 유전자 발현 양상)

  • Oh, Youn Jeong;Kim, Jung Min;Bang, In Seok
    • Journal of Life Science
    • /
    • v.28 no.2
    • /
    • pp.176-186
    • /
    • 2018
  • In this study, the total polyphenol contents, antioxidant activities and anti-proliferation effects of HepG2 cell lines in organic slovent fractions obtained from the main methanolic extract of P. yezoensis were analyzed. The polyphenol content of the $CHCl_3$ fraction was $10.3{\mu}g/mg$, slightly less than $13.08{\mu}g/mg$ of the water fraction, but $ED_{50}$ estimated by measuring DPPH free radical scavenging activity exhibited the highest $16.96{\mu}g/ml$ in the $CHCl_3$ fraction. The proliferation effects of $CHCl_3$ and EtOAc fraction toward HepG2 cells inhibited in a dose-dependent manner, showed 90% inhibition when treated for 24 hr at $900{\mu}g/ml$ of $CHCl_3$ fraction. Meanwhile gene expression patterns in HepG2 cells treated $50{\mu}g/ml$ of $CHCl_3$ fraction were identified with microarray analysis. Concerning the efficacy of P. yezoensis, gene ontology analysis explored the genes associated with response to molecule of bacterial origin, vitamin D metabolic process, and response to nutrient. Thus IL6R, CYP1A1 were selected as significant genes based on expression patterns of HepG2 cells, and pathway analysis indicates that ARNT might be considered as a upstream regulator. Also, expression analysis of IL6R and CYP1A1, activity of upstream regulator ARNT in HepG2 cells was confirmed based on Western blotting analysis at the protein level after being treated with 50 and $100{\mu}g/ml$ of $CHCl_3$ fraction.

The Effects of Orostachys japonicus on HepG2 Cell Proliferation and Oncogene Expression (와송(瓦松)이 HepG2 cell의 세포분열 및 관련유전자 발현에 미치는 영향)

  • Moon, Young-Hun;Kim, Young-Chul;Lee, Jang-Hoon;Woo, Hong-Jung
    • The Journal of Internal Korean Medicine
    • /
    • v.26 no.1
    • /
    • pp.48-59
    • /
    • 2005
  • Objectives : The aim of the study was to evaluate the effect of WS on HepG2 cell cycle and expression of related genes. Methods : The MTT assay, Cell counting analysis, $[^3H]-Thymidine$ Incorporation Assay, Flow cytometric analysis, Quantitative RT-PCR were studied. Results : WS inhibited HepG2 cell proliferation in low concentration$(1-10\;{\mu]g/ml)$ which did not cause direct cytotoxicity, with dose-dependant manner. WS in-hibited DNA synthesis as well. Flow cytometric analysis on the HepG2 cell showed G2/M phase arrest. Conclusion : These results suggest that WS inhibits HepG2 cell proliferation not by the gene regulation but by G2/M phase arrest in the cell cycle. Thus further studies on the effect of WS in G2/M phase regulation are thought to be needed.

  • PDF

Induction of Apoptosis and Cell Cycle Arrest by Jageum-Jung in HepG2 Hepatoma Cells (자금정(紫金錠)이 간암세포주 HepG2의 세포고사 및 세포주기에 미치는 영향)

  • Cho, Young-Kee;Jeon, Ji-Young;Shin, Yong-Jeen;Seol, Jae-Kyun;Rhee, Jae-Hwa;Won, Jin-Hee;Moon, Goo
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.4
    • /
    • pp.694-708
    • /
    • 2007
  • Objectives : Jageum-Jung is used as an anti-cancer agent in oriental medicine, but the mechanism by which it induces cell death in cancer cells is still unclear. The purpose of this study was to investigate the effects of Jageum-Jung on apoptosis and cell cycle arrest in HepG2 hepatoma cells. Methods : Various cancer cell lines including HepG2, C6 glioma, SH-SY5Y, PANC-1, and MCF-7 cells, were used. Apoptosis was determined by DAPI nuclei staining and flow cytometry in HepG2 cells treated with various concentrations (from 25 to 200 ${\mu}g/ml$) of $H_2O$ extract of Jageum-Jung (JGJ) for 48 hrs. Expression of cell cycle arrest mediators including Rb, p53, p21, cyclin B1, cdk4, and cyclin E proteins were measured by Western blot analysis. To estimate intracellular hydrogen peroxide levels and intracellular nitric oxide levels, HepG2 cells were stained with DCFH-DA dye and DAF dye, subjected on flow cytometric analysis. Results : 1. Jageum-Jung decreased the viability of HepG2 cells in a dose-dependent manner. 2. Jageum-Jung induced the catalytic activation of caspase-3 in HepG2 cells. 3. Jageum-Jung increased the intracellular hydrogen peroxide and NO in HepG2 cells. 4. Jageum-Jung increased the expression of Rb, p53 and p21 in HepG2 cells. 5. Jageum-Jung induced the expression of cyclin B1, cdk4, and cyclin E in HepG2 cells. Conclusions : Taken together, we suggest that Jageum-Jung exhibits cytotoxic effects on HepG2 cells, causing apoptosis and cell cycle arrest. The results showed that Jageum-Jung may do so by regulating the expression of specific target molecules that promote efficient apoptotic cell death following $G_2$/M phase arrest in a dose-dependent manner.

  • PDF

The Inhibitory Effects of Propolis on In Vitro Proliferation of Human Cancer Cell Lines (Propolis의 인체 암세포 증식억제 효과에 대한 In Vitro 연구)

  • 이현수;이지영;김동청;인만진;황우익
    • Journal of Nutrition and Health
    • /
    • v.33 no.1
    • /
    • pp.80-85
    • /
    • 2000
  • This study was undertaken to investigate the inhibitory effects of propolis on the in vitro proliferation of human colon(HT-29) and hepatoma(HepG2) cancer cell lines. The growth of the HT-29 and HepG2 cells was respectively inhibited by the administration of propolis in a concentration response-dependent manner. The distributions of HT-29 and HepG2 cells cultured in the medium containing propolis were shifted to the smaller sizes, and then HT-29 and HepG2 cells were shrunken under microscopic observations. The progression of cell cycle from G1 to S phase was significantly inhibited by propolis in the HT-29 and HepG2 cell lines, respectively. Those observations suggest that propolis has anticancer effect against some of cancer cell lines in vitro. (Korean J Nutrition 33(1) : 80-85, 2000)

  • PDF

Studies on Antitumor Effect and Synergistic Action of Natural Products with Anticancer drugs against Hepatic Tumors (생약의 간암세포에 대한 항종양효과와 항암제와의 상승작용)

  • Park, Gyeong-Sik;kim, Sung-Hoon;kim, Byung-tak
    • Journal of Haehwa Medicine
    • /
    • v.4 no.1
    • /
    • pp.211-223
    • /
    • 1995
  • The antitumor effect of 柴胡(Bupleuri Radix : BP), 茵陳(Artemisiae capillaris Herba; ACH) 및 蒲公英(Taraxaci Herba; TH) and 蒲公英 EE層(Ethyl ether layer of TH; EETH) on human hepatocytes such as Hep G2, PLC and Hep 3B, and synergistic action with the anticancer drugs, that is, mitomycin(MMC), cisplatin(CPT) and 5-fluorouracil(5-FU) were studied by the method of MTT. The results were obtained as follows: 1. $IC_{50}$ against Hep G2, PLC and Hep 3B was $15.5{\mu}g/ml$, $25.4{\mu}g/ml$ and 31.25 in MMC, $92.5{\mu}g/ml$, $50.2{\mu}g/ml$ and $62.5{\mu}g/ml$ in CPT and $125{\mu}g/ml$ in 5-FU respectively. 2. Cytotoxic effect on Hep G2 was obvious in BP-treated group, synergistic action was most effective in TH-treated group or with MMC. 3. Cytotoxic effect on Hep 3B was obvious in ACH-treated group, synergistic action was most effective in ACH-treated group or with MMC. 4. Cytotoxic effect on PLC was obvious in ACH-treated group, synergistic action was most effective in TH-treated group or with MMC. From above results it was concluded that ACH showed the best antitumor effect against PLC and Hep 3B, BP aganst Hep G2 and also synergistic effect was most effective with MMC, which indicates that it is necessary to seperate the antitumor substances in ACH.

  • PDF

Preparation of CdSe QDs-carbohydrate Conjugation and its Application for HepG2 Cells Labeling

  • Jiang, Mingxing;Chen, Yan;Kai, Guiqing;Wang, Ruijun;Cui, Huali;Hu, Meili
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.571-574
    • /
    • 2012
  • In present study, CdSe quantum dots (QDs) were prepared with a novel but simple, effective and exercisable method. Nine different types of carbohydrate molecules were used to modify CdSe QDs. D-mannose (Man)-coated quantum dots were prepared for labeling human hepatoma (HepG2) cells, because of the high expression of mannose receptor (MR) on HepG2 cells. The uptake characteristics of CdSe QDs-Man were investigated in HepG2 cells. The absorption rate result of MTT assay in 48 h suggested the extremely low cytotoxicity of CdSe QDs-Man. The presence of quantum dots was confirmed with fluorescence microscopy. These results were encouraging regarding the application of QDs molecules for early detection of HepG2 cells.