• Title/Summary/Keyword: Hydrophobic film

Search Result 190, Processing Time 0.024 seconds

Preparation of crosslinkable imide oligomers and Applications in Polyether Imides for Dual-ovenable Packaging (가교형 이미드 올리고머 제조 및 듀얼 오브너블 용기(Dual-Ovenable Packaging) 용 폴리에테르이미드에 대한 적용 연구)

  • Seo, Jongchul;Park, Su-Il;Choi, Seunghyuk;Jang, Wongbong;Han, Haksoo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.45-52
    • /
    • 2010
  • Two different imide oligomers(6FDA-ODA/APA and 6FDA-MDA/MA) having crosslinkable end groups were prepared by using a solution imidization method and their properties were investigated. Also, semi-interpenetrating polymer networks(semi-IPN) were prepared using the blends of imide oligomers with polyetherimide $Ultem^{(R)}$, which is used in dual-ovenable packaging materials. The characteristic properties of semi-IPN films were interpreted by using TGA, Thin Film Diffusion Analyzer, and WAXD. Molecular weights of imide oligomers were successfully controlled utilizing 2-aminophenylacetylene(APA) and maleic anhydride(MA) as an endcapping agent. Exotherm reactions by crosslinking appeared and the amount of exthotherm heat was linearly increased as the content of imide oligomers was increased. For semi-IPNs of $Ultem^{(R)}$ and imide oligomers, 5% and 10% weight loss temperatures increased as the contents of imide oligomers were increased. Diffusion coefficient and water uptake of semi-IPNs decreased as the content of imide oligomers was increased, which might be resulted from hydrophobic fluorine group and high packing density. It was concluded that relatively low thermal stability and hydrolytic stability of polyetherimide $Ultem^{(R)}$ were improved by incorporating new developed imide oligomers.

Preparation of in situ Patterned ZnO Thin Films by Microcontact Printing (Microcontact Printing을 이용한 미세패턴 ZnO 박막 제조)

  • 임예진;윤기현;오영제
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.7
    • /
    • pp.649-656
    • /
    • 2002
  • In situ patterned zinc oxide thin films were prepared by precipitation of Zn(NO$_3$)$_2$ aqueous solution containing urea and by microcontact printing using Self-Assembled Monolayers(SAMs) on A1/SiO$_2$/Si substrates. The visible precipitation of Zn(OH)$_2$ that was formed in the Zn(NO$_3$)$_2$ aqueous solution containing urea was enhanced with an increase of the reaction temperature and the amount of urea. As the reaction time of Zn(NO$_3$)$_2$ with urea was prolonged, the thickness and grain size of Zn(OH)$_2$ thin layers were increased, respectively. The optimum precipitation condition was at 80$\^{C}$ for 1 h for the solution with the ratio of Zn(NO$_3$)$_2$ to urea of 1 : 8. Homogeneous ZnO thin films were fabricated by the heat treatment of 600$\^{C}$ for 1 h of Zn(OH)$_2$ precipitation on Al/SiO$_2$/Si substrate. This was available to the in-situ patterned ZnO thin films with uniform grain size. Hydrophobic SAM, Octadecylphosphonic Acid(OPA) and hydrophilic SAM, 2-Carboxyethylphosphonic Acid(CPA) were applied on the Al/SiO$_2$/Si substrate by microcontact printing method. In situ patterned ZnO thin film was successfully prepared by the heat treatment of Zn(OH)$_2$ precipitated on the surface of hydrophilic SAM, CPA.

Surface and Corrosion Protection Properties of Fluorine Doped PVDF by Plasma Fluorination (플라즈마 불소화에 의해 제조된 불소 도핑 PVDF의 표면 및 부식방지 특성)

  • Kim, Seokjin;Lim, Chaehun;Kim, Daesup;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.653-658
    • /
    • 2021
  • Polyvinylidene fluoride (PVDF) is a promising coating material because of its outstanding processability. The PVDF coating, however, has limitations in anti-corrosion application due to its weak hydrophobicity compared to that of other fluoropolymers. In this study, plasma fluorination was performed using carbon tetrafluoride (CF4) gas to improve anti-corrosion properties of PVDF. The fluorine content and hydrophobicity of PVDF were investigated in different CF4 flow rates, followed by the determination of anti-corrosion properties. The fluorine content on the surface of the PVDF film increased by up to 46.70%, but the surface free energy was independent of CF4 flow rate. Meanwhile, the surface roughness of the PDVF film tended to increase by up to 150% and then decrease with increasing CF4 flow rate. It is considered that the plasma fluorination affects the surface free energy due to the introduction of fluorine functional groups and surface etching. In addition, the degree of corrosion of the PVDF-coated Fe plate was significantly reduced from 49.2% to 19.0% compared to that of the uncoated Fe plate. In particular, the degree of corrosion of the fluorinated PVDF-coated Fe plate was 13.6%, which was 28.4% lower than that of the PVDF-coated Fe plate, showing improved anti-corrosion protection.

Fabrication of an Oxide-based Optical Sensor on a Stretchable Substrate (스트레처블 기판상에 산화물 기반의 광센서 제작)

  • Moojin Kim
    • Journal of Industrial Convergence
    • /
    • v.20 no.12
    • /
    • pp.79-85
    • /
    • 2022
  • Recently, a smartphone manufactured on a flexible substrate has been released as an electronic device, and research on a stretchable electronic device is in progress. In this paper, a silicon-based stretchable material is made and used as a substrate to implement and evaluate an optical sensor device using oxide semiconductor. To this end, a substrate that stretches well at room temperature was made using a silicone-based solution rubber, and the elongation of 350% of the material was confirmed, and optical properties such as reflectivity, transmittance, and absorbance were measured. Next, since the surface of these materials is hydrophobic, oxygen-based plasma surface treatment was performed to clean the surface and change the surface to hydrophilicity. After depositing an AZO-based oxide film with vacuum equipment, an Ag electrode was formed using a cotton swab or a metal mast to complete the photosensor. The optoelectronic device analyzed the change in current according to the voltage when light was irradiated and when it was not, and the photocurrent caused by light was observed. In addition, the effect of the optical sensor according to the folding was additionally tested using a bending machine. In the future, we plan to intensively study folding (bending) and stretching optical devices by forming stretchable semiconductor materials and electrodes on stretchable substrates.

유청단백질로 만들어진 식품포장재에 관한 연구

  • Kim, Seong-Ju
    • 한국유가공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.59-60
    • /
    • 2002
  • Edible films such as wax coatings, sugar and chocolate covers, and sausage casings, have been used in food applications for years$^{(1)}$ However, interest in edible films and biodegradable polymers has been renewed due to concerns about the environment, a need to reduce the quantity of disposable packaging, and demand by the consumer for higher quality food products. Edible films can function as secondary packaging materials to enhance food quality and reduce the amount of traditional packaging needed. For example, edible films can serve to enhance food quality by acting as moisture and gas barriers, thus, providing protection to a food product after the primary packaging is opened. Edible films are not meant to replace synthetic packaging materials; instead, they provide the potential as food packagings where traditional synthetic or biodegradable plastics cannot function. For instance, edible films can be used as convenient soluble pouches containing single-servings for products such as instant noodles and soup/seasoning combination. In the food industry, they can be used as ingredient delivery systems for delivering pre-measured ingredients during processing. Edible films also can provide the food processors with a variety of new opportunities for product development and processing. Depends on materials of edible films, they also can be sources of nutritional supplements. Especially, whey proteins have excellent amino acid balance while some edible films resources lack adequate amount of certain amino acids, for example, soy protein is low in methionine and wheat flour is low in lysine$^{(2)}$. Whey proteins have a surplus of the essential amino acid lysine, threonine, methionine and isoleucine. Thus, the idea of using whey protein-based films to individually pack cereal products, which often deficient in these amino acids, become very attractive$^{(3)}$. Whey is a by-product of cheese manufacturing and much of annual production is not utilized$^{(4)}$. Development of edible films from whey protein is one of the ways to recover whey from dairy industry waste. Whey proteins as raw materials of film production can be obtained at inexpensive cost. I hypothesize that it is possible to make whey protein-based edible films with improved moisture barrier properties without significantly altering other properties by producing whey protein/lipid emulsion films and these films will be suitable far food applications. The fellowing are the specific otjectives of this research: 1. Develop whey protein/lipid emulsion edible films and determine their microstructures, barrier (moisture and oxygen) and mechanical (tensile strength and elongation) properties. 2. Study the nature of interactions involved in the formation and stability of the films. 3. Investigate thermal properties, heat sealability, and sealing properties of the films. 4. Demonstrate suitability of their application in foods as packaging materials. Methodologies were developed to produce edible films from whey protein isolate (WPI) and concentrate (WPC), and film-forming procedure was optimized. Lipids, butter fat (BF) and candelilla wax (CW), were added into film-forming solutions to produce whey protein/lipid emulsion edible films. Significant reduction in water vapor and oxygen permeabilities of the films could be achieved upon addition of BF and CW. Mechanical properties were also influenced by the lipid type. Microstructures of the films accounted for the differences in their barrier and mechanical properties. Studies with bond-dissociating agents indicated that disulfide and hydrogen bonds, cooperatively, were the primary forces involved in the formation and stability of whey protein/lipid emulsion films. Contribution of hydrophobic interactions was secondary. Thermal properties of the films were studied using differential scanning calorimetry, and the results were used to optimize heat-sealing conditions for the films. Electron spectroscopy for chemical analysis (ESCA) was used to study the nature of the interfacial interaction of sealed films. All films were heat sealable and showed good seal strengths while the plasticizer type influenced optimum heat-sealing temperatures of the films, 130$^{\circ}$C for sorbitol-plasticized WPI films and 110$^{\circ}$C for glycerol-plasticized WPI films. ESCA spectra showed that the main interactions responsible for the heat-sealed joint of whey protein-based edible films were hydrogen bonds and covalent bonds involving C-0-H and N-C components. Finally, solubility in water, moisture contents, moisture sorption isotherms and sensory attributes (using a trained sensory panel) of the films were determined. Solubility was influenced primarily by the plasticizer in the films, and the higher the plasticizer content, the greater was the solubility of the films in water. Moisture contents of the films showed a strong relationship with moisture sorption isotherm properties of the films. Lower moisture content of the films resulted in lower equilibrium moisture contents at all aw levels. Sensory evaluation of the films revealed that no distinctive odor existed in WPI films. All films tested showed slight sweetness and adhesiveness. Films with lipids were scored as being opaque while films without lipids were scored to be clear. Whey protein/lipid emulsion edible films may be suitable for packaging of powder mix and should be suitable for packaging of non-hygroscopic foods$^{(5,6,7,8,)}$.

  • PDF

Drying Shrinkage Properties of Latex Modified Concrete with Ordinary Cement and Rapid-Setting Cement (초속경 및 일반시멘트를 이용한 라텍스개질 콘크리트의 건조수축 특성)

  • Yun, Kyong-Ku;Jeong, Won-Kyong;Kim, Sung-Hwan;Lee, Joo-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.95-101
    • /
    • 2003
  • Drying shrinkage cracking which may be caused by the relatively large specific surface is a matter of grave concern for latex modified concrete(LMC) overlay and rapid-setting cement latex modified concrete(RSLMC) overlay. LMC and RSLMC were studied for field applications very actively in terms of strength and durability in Korea. However, there were no considerations in drying shrinkage. Therefore, the purpose of this dissertation was to study the drying shrinkage properties of LMC and RSLMC with the main experimental variables such as cement types(ordinary portland cement, rapid setting cement), latex contents(0, 5, 10, 15, 20%) and curing days at a same controlled environment of 60% of relative humidity and $20^{\circ}C$ of temperature. The drying shrinkage for specimens was measured with a digital dial gauge of Demec. The test results showed that the drying shrinkage of LMC and RSLMC were considerably lower than that of OPC and RSC, respectively. This might be attributed to the interlocking of hydrated cement and aggregates by a film of latex particles, water retention due to hydrophobic, and colloidal properties of the latexes resulting in reduced water evaporation.

Study on the Synthesis of the Binder for Antistatic Coating Applicable under High Voltage (고전압에 적용 가능한 대전방지 코팅제용 바인더의 합성에 관한 연구)

  • Kim, Jae Young;Yang, Hee Jun;Pak, Na Young;Choi, Young Ju;Lee, Seong Min;Chung, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.196-200
    • /
    • 2013
  • We conducted investigation on polymeric binders for anti-static coating agent which can maintain stability under the high-voltaic condition. Various polyesters composed of polyethylene glycol (PEG) and polypropylene glycol (PPG) were synthesized and studied in term of the variation in the surface resistance of the film made from coating solution composed of a conductive polymer and these polyesters as a binder. We found that the surface resistance displayed $10^7{\sim}10^8{\Omega}/{\square}$ regardless of chemical composition of binders under the potential of 10 V. Whereas, the surface resistance surged to higher than $2{\times}10^{10}{\Omega}/{\square}$ when 1000 V was applied, rendering it improper for anti-static purpose. When 1,4 butanediol (BD) was incorporated into polyesters ([PEG]/[PPG]/[BD] = 25.0/67.5/7.5), the surface resistance showed $2.8{\times}10^9{\Omega}/{\square}$ under 1000 V, acceptable for anti-static application. These observations may indicate that the hydrophobic nature of BD makes a significant contribution to the surface resistance at a high positive potential.

Rejection rate and mechanisms of drugs in drinking water by nanofiltration technology

  • Ge, Sijie;Feng, Li;Zhang, Liqiu;Xu, Qiang;Yang, Yifei;Wang, Ziyuan;Kim, Ki-Hyun
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.329-338
    • /
    • 2017
  • Nanofiltration (NF) technology is a membrane-based separation process, which has been pervasively used as the high-effective technology for drinking water treatment. In this study, a kind of composite polyamide NF thin film is selected to investigate the removal efficiencies and mechanisms of 14 trace drugs, which are commonly and frequently detected in the drinking water. The results show that the removal efficiencies of most drugs are quite high, indicating the NF is an effective technology to improve the quality of drinking water. The removal efficiencies of carbamazepine, acetaminophen, estradiol, antipyrine and isopropyl-antipyrine in ultrapure water are $78.8{\pm}0.8%$, $16.4{\pm}0.5%$, $65.4{\pm}1.8%$, $71.1{\pm}1.5%$ and $89.8{\pm}0.38%$, respectively. Their rejection rates increase with the increasing of their three-dimensional sizes, which indicates that the steric exclusion plays a significant role in removal of these five drugs. The adsorption of estradiol with the strongest hydrophobicity has been studied, which indicates that adsorption is not negligible in terms of removing this kind of hydrophobic neutral drugs by NF technology. The removal efficiencies of indomethacin, diclofenac, naproxen, ketoprofen, ibuprofen, clofibric acid, sulfamethoxazole, amoxicillin and bezafibrate in ultrapure water are $81{\pm}0.3%$, $86.3{\pm}0.5%$, $85.7{\pm}0.4%$, $93.3{\pm}0.3%$, $86.6{\pm}2.5%$, $90.6{\pm}0.4%$, $59.7{\pm}1.7%$, $80.3{\pm}1.4%$ and $80{\pm}0.5%$, respectively. For these nine drugs, their rejection rates are better than the above five drugs because they are negatively charged in ultrapure water. Meanwhile, the membrane surface presents the negative charge. Therefore, both electrostatic repulsion and steric exclusion are indispensable in removing these negatively charged drugs. This study provides helpful and scientific support of a highly effective water treatment method for removing drugs pollutants from drinking water.

Water Repellent Finishes of Polyester Fiber Using Glow Discharge (글로우방전을 이용한 폴리에스테르섬유의 발수가공)

  • Mo, Sang Young;Kim, Gi Lyong;Kim, Tae Nyun;Chun, Tae Il
    • Textile Coloration and Finishing
    • /
    • v.5 no.4
    • /
    • pp.29-41
    • /
    • 1993
  • In order to surface Hydrophobilization of Poly(ethylene terephthalate) (PET) fiber samples were treated in the atmosphere of CF$_{4}$ or $C_{2}$F$_{6}$glow discharge. The sample used in this study was PET film which is 75$\mu$m thick made by Teijin, O-Type(Japan). The cleaned samples were placed in plasma reactor made of pyrex glass cylinder, and plasma processing was carried out by glow discharge of CF$_{4}$ or $C_{2}$F$_{6}$ gas, being continuously fed by gas flow and continuously pumped out by a vacuum system. Electric power source for generate plasma state was sustained alternating current(60Hz) and voltage was sustained 600 volt. The duration of plasma treatment varied from 15 to 120 seconds except special case, the monomer gase pressure varied from 0.02 to 0.3 Torr and power range was 10 to 90 watts. The hydrophobic features of changed PET surface were evaluated by contact angle measurement and surface chemical characteristics were analyzed by ESCA. Results can be summerized as follows. 1. The most favorable setting position of substrate was the center area between the two electrodes. 2. $C_{2}$F$_{6}$ discharge current was lower than that of CF$_{4}$ when same voltage was sustained. Treated efficiency between CF$_{4}$ and $C_{2}$F$_{6}$ did not revealed significant differences under same electric power(wattage). 3. When monomer pressure is very low below 0.02 torr, as though substrate is exposed to CF$_{4}$ or $C_{2}$F$_{6}$ plasma, it tend to be hydrophilic through a little of fluorine bond and a great deal of oxidizing reaction. 4. There brought good hydrophobilization when monomer pressure was more 0.1 torr and duration of glow discharge treatment was over 45 seconds. When monomer pressure was too high, discharge current became low. Although prolong the duration, there was no more high hydrophobilization. 5. According to ESCA analysis, there were a little CF bond and a prevailing CF$_{2}$ bond in CF$_{4}$-treated substrate. There were CF$_{3}$, a little CF and a prevailing CF$_{2}$ bond in $C_{2}$F$_{6}$-treated substrate.d substrate.

  • PDF

Photocatalytic Treatment of Waste Air Containing Malodor and VOC by Photocatalytic Reactor Equipped with the Cartridges Containing the Media Carrying Photocatalyst (광촉매 카트리지를 활용한 악취 및 VOC를 함유한 폐가스의 광촉매처리)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.80-86
    • /
    • 2013
  • In this study, the photocatalytic reactor system equipped with photocatalyst-carrying-silica-media cartridges [photocatalytic reactor system (1)] was used to perform the treatment of waste air containing malodor and volatile organic compound (VOC). The result of its performance was evaluated and compared with that of the photocatalytic reactor system equipped with commercial photocatalyst-carrying-nonwoven filter-media cartridges [photocatalytic reactor system (2)]. In case of photocatalytic reactor system (1), at the 1st stage of run the removal efficiencies of ethanol and toluene continued to be 80% and 20%, respectively. However, unlike toluene, the removal efficiency of ethanol dropped to 40% at the end of the 1st stage of run. The removal efficiency of hydrogen sulfide decreased from 100% to 90%. At the 2nd stage of its run the removal efficiency of ethanol decreased to 10% while the removal efficiencies of hydrogen sulfide and toluene remained as same as 90% and 20%, respectively, even though the inlet load of toluene increased by factor of four. In the 3rd stage of its run, as the result of application of aluminium-coated reflector film to the inner wall of photocatalytic reactor system, the removal efficiencies of ethanol and toluene increased by 5% to be 15% and 25%, respectively. In case of photocatalytic reactor system (2), at the 1st stage of its run, the removal efficiencies of ethanol, hydrogen sulfide and toluene continued to be 10%, 97% and 100%, respectively. However, at 2nd stage of its run their removal efficiencies became 5%, 95% and 2~3%, respectively, which showed that the removal efficiencies of ethanol and hydrogen sulfide decreased insignificantly while the removal efficiency of toluene dropped significantly from the perfect elimination. Moreover, the reflector film did not affect the performance of photocatalytic reactor system (2) at all. Therefore the removal of ethanol, hydrogen sulfide and toluene by photocatalytic reactor system (2) was mainly attributed to hydrophobic adsorption of its nonwoven filter media and its extent of photocatalytic removal turned out to be negligible, compared to that of photocatalytic reactor system (1).