• Title/Summary/Keyword: Hydrophobic Coating

Search Result 204, Processing Time 0.026 seconds

Hydrophobic Properties of PTFE Thin Films Deposited on Glass Substrates Using RF-Magnetron Sputtering Method (고주파 마그네트론 스퍼터링 방법을 사용하여 유리 기판 위에 증착된 PTFE 박막의 발수 특성)

  • Kim, Hwa-Min;Kim, Dong-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.886-890
    • /
    • 2010
  • The polytetrafluoroethylene (PTFE) films are deposited on glass using conventional rf-magnetron sputtering method. Their hydrophobic properties are investigated for application as an anti-fouling coating layer on the screen of displays. It is found that the hydrophobicity of PTFE films largely depends on the sputtering conditions, such as Ar gas flow and deposition time during sputtering process. These conditions are closely related to the deposition rate or thickness of PTFE film. Thus, it is also found that the deposition rate or the film thickness affects sensitively the geometrical morphology formed on surface of the rf-spluttered PTFE films. In particular, the PTFE film with 1950 nm thickness deposited for 30 minute at rf-power 50 W shows a very excellent optical transmittance of over 90% and a good anti-fouling property and a good durability.

Improvement on Surface Properties of Engineering Plastic with Adding Micro-$Al_2O_3$, Nano-$Al(OH)_3$ (Micro-$Al_2O_3$와 Nano-$Al(OH)_3$ 첨가에 따른 엔지니어링 플라스틱의 표면특성 개선)

  • Jung, Eui-Hwan;Lee, Han-Ju;Lim, Kee-Joe;Heo, Jun;Kang, Seong-Hwa
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.29-29
    • /
    • 2010
  • Surface contamination and leakage current have caused operating problems. A flashover in a substation may result in destruction of an insulator or many others electrical equipment. Engineering plastics have good characteristic (light weight, good productivity and little of void) as compare with epoxy or porcelain insulators. Outdoor insulator must have resistance to contamination. However, it isn't suited to outdoor insulator because it is not hydrophobic. RTV(Room temperature vulcanizing) has a good property of hydrophobic and micro-filler. nano-filler have characteristics of obstructing exothermic reaction. In order to reduce the incidence of insulator flashover and damage, the silicon rubber contained with micro, nano-filler coating on surface of engineering plastics. In this paper, it compares tracking resistance, leakage current of the engineering plastic coated RTV with that of non-coated engineering plastic. And filled-composites performed much better than non-filled composites.

  • PDF

Characteristic Investigation on Super-Hydrophobicity of PTFE Thin Films Deposited on Al Substrates Using RF-Magnetron Sputtering Method (고주파 마그네트론 스퍼터링 방법을 사용하여 Al 기판위에 증착된 PTFE 박막의 초-발수에 관한 특성 연구)

  • Bae, Kang;Kim, Hwa-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.64-69
    • /
    • 2011
  • Super-hydrophobic properties have been achieved on the rf-sputtered polytetrafluoroethylene(PTFE) films deposited on etched aluminum surfaces. The microstructural evolution created after etching has been investigated by FESEM. The water contact angle over $160^{\circ}$ can be achieved on the rf-sputtered ultra-tihn PTFE film less than 10 nm coated on aluminum surface etched with 7 wt.%, 12.5 wt.%, and 15 wt.% HCl concentration for 12 min. XPS analysis have revealed the presence of a large quantity of $-CF_3$ and $-CF_2$ groups in the rf-sputtered PTFE films that effectively can reduce the surface energy of etched aluminum. The presence of patterned morphology along with the low surface energy at the rf-sputtered PTFE coating makes the aluminum surface with high super-hydrophobic property.

Centrifugal Liquid Chromatography with Application of the N-hexadecyl-L-proline Coated Reversed Phase for Separation of amino Acid Enantiomers (N-hexadecay-L-proline이 코팅된 역상 원심 액체크로마토그래피에 의한 아미노산 이성질체의 분리)

  • Sun Haing Lee;Tae Sub Oh;Hae Woon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.6
    • /
    • pp.849-856
    • /
    • 1992
  • We prepared a simple, economic and versatile preparative system for an enantiomeric separation. Hydrophobic amino acid enantiomers were resolved in the preparative scale by a centrifugal liquid chromatography on the N-hexadecyl-L-proline coated reversed phase. The factors controlling the retention and resolution of racemic amino acids such as the concentration of Cu(Ⅱ), pH of the eluent, the type and content of organic modifier, and rpm of CLC were examined. Several mg of hydrophobic amino acid enantiomers were separated preparatively. To separate all of different amino acid enantiomers, various coating material will be investigated.

  • PDF

Printing of Nano-silver Inks with Ink-jet Technology and Surface Treatment (잉크젯 기술자 표면처리 기술을 이용한 나노 실버 잉크 프린팅)

  • Shin, Kwon-Yong;Lee, Sang-Ho;Kim, Myong-Ki;Kang, Heui-Seok;Hwang, Jun-Young;Park, Moon-Soo;Kang, Kyung-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.104-105
    • /
    • 2007
  • In this study, characteristics of silver ink-jet printing were investigated under various substrate treatments such as substrate heating, hydrophobic coating, and ultraviolet(UV)/ozone soaking. Fluorocarbon(FC) film was spin-coated on the polyimide (PI) film substrate to obtain a hydrophobic surface. Although hydrophobicity of the FC film could reduce the diameter of the printed droplets, the singlet images printed on the FC film surface showed irregularities in the pattern size and the position of the printed droplet along with droplet merging phenomenon. The proposed UV/ozone soaking of the FC film improved the uniformity of the pattern size and the droplet position after printing and substrate heating was very effective way in preventing droplet merging. By heating of the substrate after UV/ozone soaking of the coated FC film, silver conductive lines of 78-116 ${\mu}m$ line were successfully printed at low substrate temperatures of $40^{\circ}C$.

  • PDF

Surface Modification of Functional Titanium Oxide to Improve Corrosion Resistance (내식성 향상을 위한 기능성 타이타늄 표면 개질)

  • Park, Youngju;Jeong, Chanyoung
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.256-265
    • /
    • 2021
  • Titanium is applied in various industries due to its valuable properties and abundant reserves. Generally, if a highly uniform oxide structure and a high-density oxide film is formed on the surface through anodization treatment, the utility value such as color appearance and corrosion inhibition efficiency is further increased. The objective of this study was to determine improvement of water-repellent property by controlling titanium oxide parameters such as pore size and inter-pore distance to improve corrosion resistance. Oxide film structures of different shapes were prepared by controlling the anodization processing time and voltage. These oxide structures were then analyzed using a Field Emission Scanning Electron Microscope (FE-SEM). Afterwards, a Self-Assembled Monolayer (SAM) coating was performed for the oxide structure. The contact angle was measured to determine the relationship between the shape of the oxide film and the water-repellency. The smaller the solid fraction of the surface, the higher the water-repellent effect. The surface with excellent hydrophobic properties showed improved corrosion resistance. Such water-repellent surface has various applications. It is not only useful for corrosion prevention, but also useful for self-cleaning. In addition, a hydrophobic titanium may open up a new world of biomaterials to remove bacteria from the surface.

Screening Methods for Plant-Coating Materials and Transpiration Inhibitory Effect of Soybean Oil to Crops (식물 코팅 소재 선발법과 작물들에 대한 콩 오일의 증산 억제 효과)

  • Jung, In Hong;Park, No Bong;Kim, Sang-Yeol;Na, Young-Eun;Kim, Soon-Il
    • Korean Journal of Plant Resources
    • /
    • v.27 no.4
    • /
    • pp.380-391
    • /
    • 2014
  • Plants as well as crops are damaged by a combination of the hot and dry winds that has been a major factor in the reduction of crop production. A means to protect them from damaging conditions is to consider a coating material. In this study, we established laboratory screening methods to find a coating material to protect a crop from rapid transpiration caused by various factors. In a test measuring the weight loss of kidney bean seedlings for 6 days, Avion treatments decreased its weight loss (P=0.05). Owing to long-time spend in completing this assay, we performed a more simple method using a cobalt chloride paper strip, which changes from blue to red colors under water condition. Beewax, guagum, paraffin liquid, soybean oil, and PE-635 gave a waterproofing effect above 37 and 43% at 0.5 and 1 h after treatment, respectively. However, these tested materials did not show significant waterproofing results at 2 h. Although the methods produced reasonable results, a screening method to obtain more objective data is needed. An alternative is to use an instrument that can detect the transpiration of crop leaves. In a preliminary test using barley leaves, a portable photosynthesis system showed transpiration inhibition of 2% soybean oil and 10 times-diluted Avion under field conditions. In another test using the leaves of maize seedlings and apricot tree, 2% liquid paraffin and plant oils such as apricot oil, linseed oil, olive oil, and soybean oil showed significant transpiration inhibition (P=0.05). Especially, paraffin liquid and soybean oil selected from above tests gave good transpiration inhibitory effects against rice at 2%. In addition, the mixture of 2% soybean oil and a spreader showed more elevated inhibition results comparing with soybean oil or the spreader alone indicating that the spreader may be attributed to more uniform diffusion of the hydrophobic material onto the leaf surface of maize seedlings. The hydrophobic material coated physically the stomata and cuticle layers on leaf surfaces of rice. These hydrophobic materials screened in this study are expected to be used as plant coating materials.

Influence of Flowability of Ceramic Tile Granule Powders on Sintering Behavior of Relief Ceramic Tile (과립분말 유동성 변화가 부조세라믹타일의 소결거동에 미치는 영향)

  • Shin, Cheol;Choi, Jung-Hoon;Kim, Jung-Hun;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.550-557
    • /
    • 2020
  • Used in the ceramic tile market as a representative building material, relief ceramic tile is showing increased demand recently. Since ceramic tiles are manufactured through a sintering process at over 1,000 ℃ after uniaxial compression molding by loading granule powders into a mold, it is very important to secure the flowability of granular powders in a mold having a relief pattern. In this study, kaolin, silica, and feldspar are used as starting materials to prepare granule powders by a spray dryer process; the surface of the granule powders is subject to hydrophobic treatment with various concentrations of stearic acid. The effect on the flowability of the granular powder according to the change of stearic acid concentration is confirmed by measuring the angle of repose, tap density, and compressibility, and the occurrence of cracks in the green body produced in the mold with the relief pattern is observed. Then, the green body is sintered by a fast firing process, and the water absorption, flexural strength, and durability are evaluated. The surface treatment of the granule powders with stearic acid improves the flowability of the granule powders, leading to a dense microstructure of the sintered body. Finally, the hydrophobic treatment of the granule powders makes it possible to manufacture relief ceramic tiles having a flexural strength of 292 N/cm, a water absorption of 0.91 %, and excellent mechanical durability.

Fabrication of Super-hydrophobic Surface using Solubility Difference of Polystyrene at Two Different Solvents (두 용매에서의 폴리스타이렌의 용해도 차이를 이용한 초소수성 표면 제조)

  • Jung, Jin-Suk;Park, Kwang-Bae;Choi, Ho-Suk
    • Clean Technology
    • /
    • v.14 no.1
    • /
    • pp.35-39
    • /
    • 2008
  • In this study, we successfully fabricated a super-hydrophobic polymer layer on the surface of slide glass using the solubility difference of a polymer at two different solvents. After dissolving polystyrene (PS) resins in tetrahydrofuran (THF) as a good solvent and then adding ethanol(EtOH) as a poor solvent, we were able to fabricate super-hydrophobic surface. We also investigated the effect of EtOH addition, coating methods, solution mixing time and speed, and other alcohols on the surface hydrophobicity. The water contact angle (WCA) of the fabricated surface revealed $WCA>150^{\circ}$ and the microporous surface structure composed of microparticles with the size less than $5\;{\mu}m$.

  • PDF

Hydrophobic and Mechanical Characteristics of Hydrogenated Amorphous Carbon Films Synthesized by Linear Ar/CH4 Microwave Plasma

  • Han, Moon-Ki;Kim, Taehwan;Cha, Ju-Hong;Kim, Dong-Hyun;Lee, Hae June;Lee, Ho-Jun
    • Applied Science and Convergence Technology
    • /
    • v.26 no.2
    • /
    • pp.34-41
    • /
    • 2017
  • A 2.45 GHz microwave plasma with linear antenna has been prepared for hydrophobic and wear-resistible surface coating of carbon steel. Wear-resistible properties are required for the surface protection of cutting tools and achieved by depositing a hydrogenated amorphous carbon film on steel surface through linear microwave plasma source that has $TE_{10}-TEM$ waveguide. Compared to the existing RF plasma source driven by 13.56 MHz, linear microwave plasma source can easily generate high density plasma and provide faster deposition rate and wider process windows. In this study, $Ar/CH_4$ gas mixtures are used for hydrogenated amorphous carbon film deposition. When microwave power of 1000 W is applied, 40 cm long uniform $Ar/CH_4$ plasma could be obtained in gas pressure of 200~400 mTorr. The Vickers hardness measurement of hydrogenated amorphous carbon film on steel surface was evaluated. It was found the optimized deposition condition at $Ar:CH_4=25:25$ sccm, 300 mTorr with microwave power of 1000W and RF bias power of 100W. By deposition of hydrogenated amorphous carbon film, contact angle on steel surfaces increases from $43.9^{\circ}$ to $93.2^{\circ}$.