• Title/Summary/Keyword: Hydrophobic/hydrophilic surface

Search Result 310, Processing Time 0.025 seconds

Influence of Implant Surface Coated with pH Buffering Agent on Early Osseointegration

  • Kang, Joo Hyun;Kim, Su-Kyoung;Pae, Hyung Chul;Park, Jin Young;Cha, Jae-Kook;Choi, Seong-Ho
    • Journal of Korean Dental Science
    • /
    • v.11 no.1
    • /
    • pp.5-13
    • /
    • 2018
  • Purpose: Surface treatment with pH buffering agent has been developed to achieve higher and faster osseointegration. The aim of this study was to evaluate its influence by measuring removal torque and analyzing histological characteristics. Materials and Methods: Titanium implants with following surfaces were used in this study: sand-blasted acid-etched (SA) surface (SA group as control I group), SA surface in calcium chloride aqueous solution (CA group as control II group) and SA surface coated with pH buffering agent (pH group as test group). Removal torque test after 2 weeks and bone-to-implant contact and bone area analyses at 2 and 4 weeks were performed. Result: The rotational torque values at 2 weeks were significantly higher in pH group ($107.5{\pm}6.2Ncm$, P<0.05). The mean values of bone-to-implant contact at 2 and 4 weeks were both higher in pH group ($93.0%{\pm}6.4%$ at 2 weeks, $88.6%{\pm}5.5%$ at 4 weeks) than in SA group ($49.7%{\pm}9.7%$ at 2 weeks, $47.3%{\pm}20.1%$ at 4 weeks) and CA group ($73.7%{\pm}12.4%$ at 2 weeks, $72.5%{\pm}10.9%$ at 4 weeks) with significances (P<0.05). The means of bone area showed significantly higher numbers in pH group ($39.5%{\pm}11.3%$ at 2 weeks, $71.9%{\pm}10.9%$ at 4 weeks, P<0.05). Conclusion: Our findings demonstrated that surface modification with pH buffering agent improved early osseointegration with superior biomechanical property.

Dispersion Characteristics of Natural Crystalline Graphite Powders by Surface Modification (표면개질에 의한 인상흑연 분체의 분산특성 연구)

  • Kim, Byeong-Gon;Choe, Sang-Geun;Jeong, Heon-Saeng;Han, Sang-Geun;Lee, Jae-Jang
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.679-684
    • /
    • 2001
  • The surface of natural graphite has not only good electrical conductivities and lubrication properties but also has strong hydrophobicity. There are no functional groups and chemical properties on it. It is difficult to join with any other ions and to disperse in aqueous system. In order to increase dispersion ability throughout modification of surface property, it is necessary to let graphite have some function on its surface by the adsorption of surfactant molecules. In this study, using zeta potential adsorbed surfactant molecules(ABDM) on graphite surface and its surface Properties turn hydrophobic into hydrophilic. The dispersing mechanism of graphite particles in aqueous system has been explained using the DLVO theory, It is concluded that the high dispersable graphite suspension of which dispersing stability$(T_{1/2})$ is 44.5 hours at pH 10 and 22.5mV zeta potential can be produced.

  • PDF

Surface Modification and Enzymatic Degradation of Microbial Polyesters by Plasma Treatments (플라즈마를 이용한 미생물합성 폴리에스테르의 표면개질과 효소분해성)

  • Kim, Jun;Lee, Won-Ki;Ryou, Jin-Ho;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.7 no.2
    • /
    • pp.19-25
    • /
    • 2006
  • Since the enzymatic degradation of microbial poly(hydroxylalkanoate)s (PHAs), such as poly[(R)-3-hydroxybutyrate] and poly[(R)-3-hydroxybutyrate-co-3-hydroxyvalerate] initially occurs by a surface erosion process, their degradation behaviors can be controlled by the change of surface property. In order to control the rate of enzymatic degradation, plasma modification technique was applied to change the surface property of microbial PHAs. The surface hydrophobic and hydrophilic properties of PHA films were introduced by $CF_3H$ and $O_2$ plasma exposures, respectively. The enzymatic degradation was carried out at $37^{\circ}C$ in 0.1 M potassium phosphate buffer (pH 7.4) in the presence of an extracellular PHB depolymerase purified from Alcaligenes facalis T1. The results showed that the significant retardation of initial enzymatic erosion of $CF_3H$ plasma-treated PHAs was observed due to the hydrophobicity and the enzyme inactivity of the fluorinated surface layers while the erosion rate of $O_2$ plasma-treated PHAs was not accelerated.

  • PDF

The analysis of surface degradation on polymer material by contact angle properties (접촉각 특성을 이용한 고분자복합재료의 표면열화 해석)

  • Park, Jong-Kwan
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.3
    • /
    • pp.8-14
    • /
    • 2002
  • UV, heat, and discharge treatments are arbitrary simulated for finding out the initiations and processes of surface degradation on the polymer surface. Especially, this study is focused on the inter-relation between chemical changes and electrical properties. In contact angle to measure the change of activated degree, that of polymers surface shows a slight hydrophobicity of 73$^{\circ}$~91$^{\circ}$. But, discharge treatment and UV treatment of 300 nm wavelength changed it to the hydrophilic one with the decrease of contact angle, 13.8$^{\circ}$ and 20$^{\circ}$ respectively. Thermal-treatment and UV treatment of 430~500 nm wavelength changed the surface to the hydrophobic one with the increase of contact angle, 90$^{\circ}$ and 80.1$^{\circ}$ respectively.  

Hydrophilic Finish of Polyester Fabrics using Sericin Finishing Agents (세리신 가공제에 의한 폴리에스터 직물의 친수화 가공)

  • Park, In-Woo;Hwang, Gye-Soon;Hong, Young-Ki;Bae, Han-Soo;Bae, Kie-Seo
    • Textile Coloration and Finishing
    • /
    • v.21 no.1
    • /
    • pp.38-45
    • /
    • 2009
  • First of all, the properties imparted to PET fabrics are resistance to and recovery from creasing or wrinkling when wet or dry; high resistance to stretch in the filament yarns but not in the staple; high abrasion resistance; good texture and appearance; resistance to heat ageing; good chemical resistance and good resistance, behind glass, to sunlight. But, the low moisture regain of PET fabric conduces to static troubles in textile processing. Furthermore, garments made from PET may, during wear, develop electric charges which attract to the fabric particles of soil(dirt, swarf, dust) flying in the air, so that the cuffs of shirts, for example, become soiled quickly and are not easily laundered clean. The sericin constitutes 25$\sim$30% of silk protein and surrounds the fibroin fiber with sticky layer that supports the formation of a cocoon. The useful biochemical properties of sericin protein are oxidation resistant, antibacterial, UV resistant, hydrophilic property, and good affinity with hydrophobic material. These properties can be used as an improving reagent or a coating agent for natural and synthetic fibers, fabrics, and other intermediate products. The sericin is also applied to cross-link, and can be blended with other materials. In this study, we modified the surface of PET fabric by mixture of sericin finishing agent; sericin, polyuretane binder and 1,2,3,4-butanetetracarboxylic acid (BTCA) cross-link agent. Also, we investigated the finshing effect; moisture regain, stiffness, handle, drape and electrostatic. The moisture regain of PET fabric treated with sericin finishing agent was higher than that of untreated PET fabric. As a result of evaluating influence about handle of PET fabrics treated with sericin finishing agent, it was confirmed that the sericin finishing agent could be use as a linen like finishing agent.

Synthesis of Adhesion Promoters with Improved Compatibility and Properties of UV-Curable Adhesives Containing Adhesion Promoters (상용성이 개선된 접착 증진제의 합성 및 이를 함유한 자외선 경화형 접착제의 특성분석)

  • Park, Jung-Hyun;Won, Jonh-Woo;Kim, Ju-Yeol;Yoon, Yoo-Jung;Kwon, Oh-Hyeong;Hwang, Jin-Sang
    • Journal of Adhesion and Interface
    • /
    • v.19 no.4
    • /
    • pp.145-153
    • /
    • 2018
  • In this study, adhesion promoters with acrylate and carboxylic acid moiety were synthesized from malenized polybutadiene and 2-hydroxyethyl acrylate for producing adhesive film with low water absorption and high adhesion. The surface properties, adhesion strength, mechanical properties and water absorption of adhesive films were characterized according to the amount of acrylate and carboxylic acid in the synthesized adhesion promoters. As the carboxylic acid in the adhesion promoters increased, the adhesion strength showed a tendency to increase and the mechanical properties also improved compared to the commercial adhesion promoter. The compatibility of adhesion promoters improved remarkably due to the presence of polybutadiene (hydrophobic nature), maleic anhydride (hydrophilic nature) and carboxylic acid (hydrophilic nature).

RGP lens 다목적 용액의 습윤성에 관한 비교 연구

  • Park, Hyeon-Ju;Kim, Jae-Min;Lee, Gi-Yeong
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.428-433
    • /
    • 2003
  • We measured the effect of wettability of six MPSs for RGP(rigid gas permeable) lens. The used MPSs(multipurpose solutions) were OPTI-SOAK(ALCON), SOLO care hard(CIBA Vision), Total care(ALLERGAN), Simplicity(BOSTON), Wetting and Soaking Sol.(Bausch & Lomb) and Aquas-multi(Saehan). These MPSs keeps hydrophilic property of lens surface and increase the effect of cleaning or increase the effect of preservative effect. To compare with the effect of wettability we followed the way of contact angle measurement which was general way to measure wettability and compared lens which was conducted by each MPS made by different companies. As a control, 0.9% NaCl solution and artificial tears were used. The degree of the effect of wettability was decided by contact angle. It is hydrophilic property nearby $0^{\circ}$ of contact angle and it is closed by hydrophobic property as it increases. The results showed that every lens was nearby hydrophilic property within $25\;^{\circ}-36\;^{\circ}$. Also, it was differed by various factors. The surface tension showed various differences between 19.8 and 31.3 mN/m. In the viscosity, MPSs represented the highest viscosity between $4^{\circ}C$ and $20^{\circ}C$. It was much higher than compared with the viscosity of soft lens MPS. This experiment could be used to grasping the interaction between solutions used to MPS and the natural endowments of lens and to considering the relations of different factors effecting the wettability.

  • PDF

Changes of Surface Characteristics of Polyester Fabrics on the Deposition and the Removal of Oily Soils (I) - The Effect of Wash Cycles on the Water- and Oil-repellent Finished Fabrics in Detergency - (유성오구의 부착과 제거에 있어서 폴리에스테르 직물의 표면특성 변화 (I) -발수발유 가공포의 반복세척 효과-)

  • 이정숙;하희정
    • Textile Coloration and Finishing
    • /
    • v.11 no.6
    • /
    • pp.24-35
    • /
    • 1999
  • This study was carried out to investigate the changes of surface characteristics of polyester fabrics on the deposition and the removal of oily soils from polyester fabrics in detergency, The relations between the removal of soil and the changes of surface properties of polyester fabrics treated with water- and oil-repellent agents were discussed before and after various wash cycles. Two kinds of fluoropolymers were selected as water-and oil-repellent finishing agents. The effects of water- and oil-repellent finishes were determined by the water repellency and oil repellency. The surface properties of untreated and treated polyester fabrics were evaluated with respect to contact angle and wicking time. The treatment of polyester fabrics with fluoropolymers improved efficiently water repellency, oil repellency, contact angle and wicking time. But those properties were greatly decreased after 3 times of wash cycles in detergency The deposition of oily soils on the untreated fabrics was drastically increased with increasing of wash cycles. The deposition and the removal of oily soils from fabrics treated with fluoropolymer having hydrophobic components were very low after various wash cycles. The deposition and the removal of oily soils on the fabrics treated with fluoropolymer having hydrophilic components were high comparatively after various wash cycles. Even though the surface properties of treated fabrics were greatly decreased with the increasing of wash cycles, the remains of oily soils on the fabrics were lower than those of untreated fabrics in various wash cycles. But the remains of soils were drastically increased after 10 times of wash cycles in any cases.

  • PDF

Surface Modification of Latex with Parylene by Chemical Vapor Deposition (화학기상증착법의 Parylene 코팅에 의한 천연 라텍스 표면개질)

  • Song, Jeom-Sik;Choi, Seo-Yoon;Jung, Seong-Hee;Cha, Gook-Chan;Lee, Suk-Min;Mun, Mu-Seong
    • Elastomers and Composites
    • /
    • v.39 no.4
    • /
    • pp.301-308
    • /
    • 2004
  • Three types of parylene (PA-N, PA-C, PA-D) were used for coating the surface on natural latex rubbers in order to improve surface characteristics including mechanical properties and biocompatibility. The parylene coating was the CVD (chemical vapor deposition) method, and the surface properties of the modified latex were measured. Annealing effects on the mechanical properties of the coated latex were also investigated. The adhesion between latex and parylene was good for all the types of parylene used. As annealing temperature was increased, latex modified with PA-N became more hydrophobic, while the latex treated with PA-C and PA-D became more hydrophilic. As the annealing temperature was raised, the tensile strength was increased, and the elongation was decreased. The biocompatibility was noticeably improved on the latex surface modified with the parylenes through CVD method.

PVP Hydrogel Coatings on Polypropylene Fibers using E-beam Irradiation (전자 빔을 이용한 폴리프로필렌 섬유의 PVP 하이드로젤 코팅)

  • Lee, Ji Eun;kwak, Hyo-Bin;Lee, Yong-Hyo;Kim, Kyung-Min;Lim, Jung-Hyurk
    • Journal of Adhesion and Interface
    • /
    • v.20 no.2
    • /
    • pp.66-70
    • /
    • 2019
  • The surface of hydrophobic polypropylene (PP) fibers (spun-bonded fabric) was treated by an atmospheric plasma treatment method. These pre-treated hydrophilic PP fabrics were dip-coated in the aqueous poly(N-vinyl pyrrolidone) (PVP) solution. PVP layers on the surface of PP fiber were crosslinked by an irradiation of electron beam. The thickness of PVP hydrogels coated on the surface was easily controlled by changing the concentration of PVP in coating solution. The stepwise surface treatment, PVP coating, and hydrogel formation via electron beam irradiation were analyzed by the measurement of contact angle, scanning electron microscopy, and optical microscopy.