• 제목/요약/키워드: Hydrophobic/Hydrophilic

검색결과 642건 처리시간 0.019초

MICROLEAKAGE AND WATER STABILITY OF RESIN CEMENTS

  • Choi Sun-Young;Lee Sun-Hyung;Yang Jae-Ho;Han Jung-Suk
    • 대한치과보철학회지
    • /
    • 제41권3호
    • /
    • pp.369-378
    • /
    • 2003
  • Statement of Problem: Recently, resin cements have become more widely used and have been accepted as prominent luting cements. Current resin cements exhibit less microleakage than conventional luting cements. However, the constant contact with water and exposure to occlusal forces increase microleakage even in resin cements inevitably. Most bonding resins have been modified to contain a hydrophilic resin such as 2-hydroxyethylmethacrylate (HEMA) to overcome some of the problems associated with the hydrophobic nature of bonding resins. By virtue of these modifications, bonding resins absorb a significant amount of water, and there may also be significant stresses at bonding interfaces, which may adversely affect the longevity of restorations. Therefore the reinforcement of water stability of resin cement is indispensable in future study. Purpose: This study was conducted to examine the influence of water retention on microleakage of two resin cements over the period of 6 months. Materials and Methods: 32 extracted human teeth were used to test the microleakage of a single full veneer crown. Two resin cements with different components and adhesive properties - Panavia F (Kuraray Co., Osaka, Japan) and Super-Bond C&B (Sun Medical Co., Kyoto, Japan)- were investigated. The storage medium was the physiological saline solution changed every week for 1 month, 3 months, and 6 months. One group was tested after storage for 1 day. At the end of the each storage period, all specimens were exposed to thermocycling from $5^{\circ}C$ to $55^{\circ}C$ of 500 cycles and chewing simulation of 50,000 cycles, and then stained with 50% silver nitrate solution. The linear penetration of microleakage was measured using a stereoscopic microscope at ${\times}40$ magnification and a digital traveling micrometer with an accuracy of ${\pm}3{\mu}m$. Values were analyzed using two-way ANOVA test, Duncan's multiple range tests (DMRT). Results : Statistically significant difference of microleakage was shown in the 3-month group compared with the1-day or 1-month group in both systems (p<0.05) and there were statistically significant differences in microleakage between the 3-month group and the 6-month group in both systems (p<0.05). The two systems showed different tendency in the course of increased microleakage during 3 months. In Panavia F, microleakage increased slowly throughout the periods. In Super-Bond C&B, there was no significant increase of microleakage for 1 month, but there was statistically significant increase of microleakage for the next 2 months. For the mean microleakage for each period, in the 3-month group, microleakage of Super-Bond C&B was significantly greater than that of Panavia F. On the other hand, in the 6-month group, microleakage of Panavia F was significantly greater than that of Super-Bond C&B (p<0.05). Conclusion: Within the limitation of this study, water retention of two different bonding systems influence microleakage of resin cements. Further studies with the longer observation periods in viro are required in order to investigate water stability and the bonding durability of the resin cement. CLINICAL IMPLICATIONS Microleakage at the Cement-tooth interfaces did not necessarily result in the failure of the crowns. But it is considered to be a major factor influening the longerity of restorations. Further clinical approaches for decreasing the amount of microleakage are required.

낙동강 원수를 대상으로 Al염계 및 Fe염계 응집제를 이용한 고도응집의 적용 (Application of Enhanced Coagulation for Nakdong River Water Using Aluminium and Ferric Salt Coagulants)

  • 문신득;손희종;염훈식;최진택;정철우
    • 대한환경공학회지
    • /
    • 제34권9호
    • /
    • pp.590-596
    • /
    • 2012
  • 고도응집 공정은 DBP 전구물질인 NOM을 제거하는 최적기법이다. 본 연구에서는 낙동강 원수를 대상으로 $FeCl_3$, alum, PSOM 및 PACl 응집제를 대상으로 고도응집 공정의 적용시 가장 효과적인 응집제와 응집조건을 DOC, THMFP, HAAFP 및 제타전위 변화를 중심으로 평가하였다. 탁도 제거율은 고도응집을 적용시 기존응집에 비해 제거율의 상승은 없었으며, 일정 응집제 주입량 이상에서는 제거율이 더욱 저하되었으나 DOC, THMFP 및 HAAFP 제거율은 응집제 종류별로 기존응집에 비해 각각 13~18%, 9~18% 및 9~18% 정도 증가하였다. 응집 pH 변화에 따른 탁도 제거특성은 $FeCl_3$와 PACl이 pH 4~10 범위에서 비교적 높은 탁도 제거율을 나타내었고 alum과 PSOM의 경우는 pH 5~8의 범위에서 안정적인 제거율을 나타내었다. DOC는 4종의 응집제 모두 pH 5~7 범위에서 안정적인 제거율을 나타내었다. 고도응집 공정을 적용시 1 kDa 이하 및 10 kDa 이상의 용존 유기물질의 제거율은 각각 11~21% 및 16% 정도 기존응집 공정에 비해 증가하였으며, 소수성 및 친수성 유기물질의 제거율은 각각 27~38% 및 11~15% 정도 증가하였다. 낙동강 원수의 고도응집에 가장 효과적인 응집제로는 $FeCl_3$로 나타났으며, 다음으로 PSOM, PACl 및 alum 순이었다.