• Title/Summary/Keyword: Hydrophilicity improvement

Search Result 33, Processing Time 0.027 seconds

Effects of the Graphene Oxide on Glucose Oxidase Immobilization Capabilities and Sensitivities of Carbon Nanotube-based Glucose Biosensor Electrodes (그래핀 옥사이드가 탄소나노튜브기반 바이오센서 전극의 포도당 산화효소 담지능및 민감도에 미치는 영향)

  • Park, Mi-Seon;Kim, Do Young;Jung, Min-Jung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.47-52
    • /
    • 2015
  • To improve both the GOD immobilization capability and sensitivity of MWCNTs-based biosensor electrode, the electrode was prepared by adding different quantities of GO. The addition of GO increased hydrophilicity and the surface free energy of electrodes for glucose sensing as well as the dispersion of MWCNTs. In addition, the GOD immobilization capability was enhanced and the sensitivity was improved up to $121{\mu}A\;mM^{-1}$ even though having a high $K_m$ value (0.105) when adding 0.05 g GO to 0.05 g MWCNTs. These experimental results were attributed to the fact that the improvement in dispersion stability for MWCNTs, hydrophilicity, and surface free energy of electrode surface due to the addition of GO affected GOD immobilization capability.

Surface Characterization of Low Temperature Plasma Treated Wool Fiber - The Effect of the Nature of Gas-

  • Kan, C.W.;Chan, K.;Yuen, C.W.M.
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.52-58
    • /
    • 2004
  • Previous investigation results revealed that after the Low Temperature Plasma (LTP) treatment, the hydrophilicity of wool fiber was improved significantly. Such improvement enhances the wool dyeing and finishing processes which might be due to the changes of the wool surface to a more reactive one. In this paper, wool fibers were treated with LTP with different gases, namely, oxygen, nitrogen and gas mixture (25 % hydrogen/75 % nitrogen). Investigations showed that chemical composition of wool fiber surface varied differently with the different plasma gas used. The surface chemical composition of the different LTP-treated wool fibers was evaluated with different characterization methods, namely FTIR-ATR, XPS and saturated adsorption value. The experimental results were thoroughly discussed.

Surface Modification of Polypropylene Meltblown(PPMB) Nonwovens by Plasma Treatment (초극세형 폴리프로필렌부직포의 플라즈마를 이용한 표면개질)

  • Lee, Youn-Eung;Joo, Chang-Whan
    • Textile Coloration and Finishing
    • /
    • v.18 no.1
    • /
    • pp.20-27
    • /
    • 2006
  • On the purpose of surface modifications of polypropylene meltblown(PPMB) nonwovens, PPMB nonwovens were treated in the plasma system by oxygen atmosphere with different treatment time and discharge power. Dimensional change and physical properties of the treated nonwovens were evaluated. Contact angles onto PPMB nonwovens about water and methyleneiodide were measured and surface energies were calculated by Owen's method. As the results, microcraters were observed on the surface of treated nonwovens. Tenacity and breaking strain of PPMB nonwovens decreased with increasing treatment time and discharge power. Surface energy of PPMB nonwovens increased by plasma treatment. Meanwhile, the friction static voltage and dyeability of PPMB nonwovens have enhanced to some extent by oxygen plasma treatment due to the improvement of surface hydrophilicity.

Fabrication and separation performance of polyethersulfone/sulfonated TiO2 (PES-STiO2) ultrafiltration membranes for fouling mitigation

  • Ayyaru, Sivasankaran;Ahn, Young-Ho
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.199-209
    • /
    • 2018
  • Polyethersulfone (PES)/sulfonated $TiO_2$ ($STiO_2$) nanoparticles (NPs) UF blended membranes were fabricated with different loadings of $STiO_2$. The modified membranes exhibited significant improvement in surface roughness, porosity, and pore size when compared to the PES membrane. The $P-STiO_2$ 1 and $P-TiO_2$ 1 blended membranes exhibited higher water flux, approximately 102.4% and 62.6%, respectively, compared to PES. SPP-$STiO_2$ and $P-STiO_2$ showed lower Rir fouling resistance than the $P-TiO_2$ blended membrane. Overall, the $STiO_2$-blended membranes provide high hydrophilicity permeability, anti-fouling performance, and improved BSA rejection attributed to the hydrogen bonding force and more electrostatic repulsion properties of $STiO_2$.

Preparation and characterization of PVDF/TiO2 composite ultrafiltration membranes using mixed solvents

  • Tavakolmoghadam, Maryam;Mohammadi, Toraj;Hemmati, Mahmood
    • Membrane and Water Treatment
    • /
    • v.7 no.5
    • /
    • pp.377-401
    • /
    • 2016
  • To study the effect of titanium dioxide ($TiO_2$) nanoparticles on membrane performance and structure and to explore possible improvement of using mixed solvents in the casting solution, composite polyvinylidene fluoride (PVDF) ultrafiltration membranes were prepared via immersion precipitation method using a mixture of two solvents triethyl phosphate (TEP) and dimethylacetamide (DMAc) and addition of $TiO_2$ nanoparticles. Properties of the neat and composite membranes were characterized using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), Atomic force microscopy (AFM) and contact angle and membrane porosity measurements. The neat and composite membranes were further investigated in terms of BSA rejection and flux decline in cross flow filtration experiments. Following hydrophilicity improvement of the PVDF membrane by addition of 0.25 wt.% $TiO_2$, (from $70.53^{\circ}$ to $60.5^{\circ}$) degree of flux decline due to irreversible fouling resistance of the composite membrane reduced significantly and the flux recovery ratio (FRR) of 96.85% was obtained. The results showed that using mixed solvents (DMAc/TEP) with lower content of $TiO_2$ nanoparticles (0.25 wt.%) affected the sedimentation rate of nanoparticles and consequently the distribution of nanoparticles in the casting solution and membrane formation which influenced the properties of the ultimate composite membranes.

Improvement of Polycarbonate Properties by Coating of TiO2 and SiO2 Thin Film (TiO2/SiO2 박막 코팅에 의한 폴리카보네이트 특성 개선)

  • Won, Dong So;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.41-46
    • /
    • 2014
  • The property improvement of polycarbonate coated with a multilayer film composed of an inorganic $SiO_2$ film and a photocatalytic $TiO_2$ film was studied. The $SiO_2$ film as a binder had an excellent light transmission characteristic. After the treatment with atmospheric pressure plasma, the surface of $SiO_2$ film showed the hydrophilicity, which increased the film coating uniformity with a $TiO_2$-containing aqueous solution. When $TiO_2$ film was over 200 nm thick, the absorption effect of UV rays in the range of 180~400 nm suppressed the yellowing phenomena of polycarbonate substrate. The inorganic film improved the heat resistance of polycarbonate substrates. $TiO_2$ film in the outmost under the exposure of UV rays promotes the catalytic oxidation characteristics and yields the capability to the decomposition of organic contaminants, and also increases the self-cleaning properties due to the increase of hydrophilicity. Structural stability of the polycarbonate substrate coated with inorganic $TiO_2$ and $SiO_2$ film was shown. The role of $SiO_2$ film between $TiO_2$ and polycarbonate substrate suppressed the peeling of $TiO_2$ film by inhibiting the photocatalytic oxidation effect of $TiO_2$ film on the polycarbonate substrate.

Surface Treatment and Dyeability of Poly(phenylene sulfide) Films by UV/O3 Irradiation (UV/Ozone 조사에 의한 Poly(phenylene sulfide) 필름의 표면처리와 염색성)

  • Jang, Yong-Joon;Jang, Jin-Ho
    • Textile Coloration and Finishing
    • /
    • v.23 no.4
    • /
    • pp.284-289
    • /
    • 2011
  • Poly(phenylene sulfide)(PPS) films were photooxidized under UV/ozone irradiation. The effect of UV energy on the surface properties of the UV-irradiation PPS films were investigated by the measurement of reflectance, surface roughness, and contact angle. Reflectance decreased at the wavelength of 400nm and the surface roughness increased with increased UV energy. The improvement in hydrophilicity with increased $O_{1s}/C_{1s}$ was caused by the introduction of hydrophilic $SO_2$ bond. Surface energy increased from 46.6 to $78.3mJ/m^2$ with increased UV energy up to $21.2J/cm^2$. Also zeta potential decreased with increased UV energy. The increased dyeability to cationic dyes may be due to the photochemically introduced anionic and dipolar dyeing sites on the PPS films surfaces.he photochemically introduced anionic and dipolar dyeing sites on the PPS films surfaces.

Cost-effective polyvinylchloride-based adsorbing membrane for cationic dye removal

  • Namvar-Mahboub, Mahdieh;Jafari, Zahra;Khojasteh, Yasaman
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.131-139
    • /
    • 2020
  • The current study focused on the preparation of low-cost PVC-based adsorbing membrane. Metakaolin, as available adsorbent, was embedded into the PVC matrix via solution blending method. The as-prepared PVC/metakaolin mixed matrix membranes were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM), pure water permeability and contact angle measurements. The results confirmed the improvement of PWP and hydrophilicity due to the presence of metakaolin in the PVC matrix. Additionally the structure of PVC membrane was changed due to the incorporation of metakaolin in the polymer matrix. The static adsorption capacity of all samples was determined through dye removal. The effect of metakaolin dosage (0-7%) and pH (4, 8, 12) on dye adsorption capacity was investigated. The results depicted that the highest adsorption capacity was achieved at pH of 4 for all samples. Additionally, adsorption data were fitted on Langmuir, Freundlich, and Temkin models to determine the appropriate governing isotherm model. Finally, the dynamic adsorption capacity of the optimum PVC/metakaolin membrane was studied using dead-end filtration cell. The dye removal efficiency was determined for pure PVC and PVC/metakaolin membrane. The results demonstrated that PVC/metakaolin mixed matrix membrane had a high adsorption capacity for dye removal from aqueous solution.

Effect of Layered Silicates on Flame retardant and Mechanical Properties of HDPF/$Mg(OH)_2$/Clay Nanocomposites (층상 실리케이트 첨가에 따른 HDPF/$Mg(OH)_2$/Clay 나노복합재의 특성연구)

  • Min, Kyung-Dae;Lee, Kyung-Yong;Lee, Ho-Lim;Kim, Do-Young;Kang, Seung-Hun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.260-260
    • /
    • 2010
  • In recent years, polymer/clay nanocomposites have generated a great interest, both in industry and in academia, because they often exhibit remarkable improvement in material properties when compared with the virgin polymer or conventional micro and macro-composites. Among these properties are stiffness, strength, dimensional stability and permeability. [1-3] The dispersion of hydrophilic silicates in a hydrophobic matrix like Polyethylene (PE) is difficult because of the difference in character between PE and Montmorillonite (MMT). Therefore, it is necessary to modify PE with polar groups, which can increase the hydrophilicity of PE. In this study, High density polyethylene (HDPE)/$Mg(OH)_2$/Montmorillonite (MMT) nanocomposites having a various compositions were prepared by a melt blending technique with an internal mixer and properties namely mechanical, morpology, rheological and thermal properties were investigated

  • PDF

Effect of plasma polymerized film on fouling of heat exchangers

  • Kim, Ki-Hwan;Park, Sung-Chang;doo-Jin choi;Jung, Hyung-Jin;Ha, Sam-Chul;Kim, Chul-Hwan;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.160-160
    • /
    • 1999
  • To reduce the fouling of heat exchangers, the plasma polymerized films was coated on the heat exchangers, and an effect of plasma polymerized film on fouling of heat exchangers was investigated. Monomer and reactive gases were used as the precursors of plasma polymerization. Plasma polymerized films were deposited with process parameters of pressure, power, and ratio of gases. Plasma polymerized films could be served as functional layers of good wettability and high resistance to corrosion. Wettability of plasma polymerized film could be controlled by the ratio change gas mixture. Hydrophilicity of plasma polymerized films on heat exchanger in air conditioner can provide improvement in performance of heat exchanger which results from good water drainage, decrease of pressure drop. DC-plasma polymerized films improve resistance to corrosion whcih is related to deposit formation in heat exchangers. The difference in the build up of fouling deposits between bare substrate and plasma polymerized substrate was investigated by scanning electron microscopy (SEM). An effect of plasma polymerized film on fouling of heat exchangers was discussed in terms of surface properties such as wettability, surface chemical state.

  • PDF