• Title/Summary/Keyword: Hydrophilic Surface Treatment

Search Result 224, Processing Time 0.022 seconds

Preparation of in situ Patterned ZnO Thin Films by Microcontact Printing (Microcontact Printing을 이용한 미세패턴 ZnO 박막 제조)

  • 임예진;윤기현;오영제
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.7
    • /
    • pp.649-656
    • /
    • 2002
  • In situ patterned zinc oxide thin films were prepared by precipitation of Zn(NO$_3$)$_2$ aqueous solution containing urea and by microcontact printing using Self-Assembled Monolayers(SAMs) on A1/SiO$_2$/Si substrates. The visible precipitation of Zn(OH)$_2$ that was formed in the Zn(NO$_3$)$_2$ aqueous solution containing urea was enhanced with an increase of the reaction temperature and the amount of urea. As the reaction time of Zn(NO$_3$)$_2$ with urea was prolonged, the thickness and grain size of Zn(OH)$_2$ thin layers were increased, respectively. The optimum precipitation condition was at 80$\^{C}$ for 1 h for the solution with the ratio of Zn(NO$_3$)$_2$ to urea of 1 : 8. Homogeneous ZnO thin films were fabricated by the heat treatment of 600$\^{C}$ for 1 h of Zn(OH)$_2$ precipitation on Al/SiO$_2$/Si substrate. This was available to the in-situ patterned ZnO thin films with uniform grain size. Hydrophobic SAM, Octadecylphosphonic Acid(OPA) and hydrophilic SAM, 2-Carboxyethylphosphonic Acid(CPA) were applied on the Al/SiO$_2$/Si substrate by microcontact printing method. In situ patterned ZnO thin film was successfully prepared by the heat treatment of Zn(OH)$_2$ precipitated on the surface of hydrophilic SAM, CPA.

A Biocompatibility Evaluation of Hydroxyapaite·Titania Surface for Dental Implant (임플란트 적용을 위한 하이드록시아파타이트·이산화티탄 표면의 생체적합성 평가)

  • Kang, Min-Kyung;Bae, Sung-Suk
    • Journal of dental hygiene science
    • /
    • v.16 no.1
    • /
    • pp.70-76
    • /
    • 2016
  • The objective of this study was to fabricate hydroxyapatite (HA) containing titania layer by HA blasting and anodization method to obtain advantages of both methods and evaluated biocompatibility. To fabricate the HA containing titania layer on titanium, HA blasting treatment was performed followed by microarc oxidation (MAO) using the electrolyte solution of 0.04 M ${\beta}$-glycerol phosphate disodium salt n-hydrate and 0.4 M calcium acetate n-hydrate on the condition of various applied voltages (100, 150, 200, 250 V) for 3 minutes. The experimental group was divided according to the surface treatment procedure: SM (simple machined polishing treatment), HA, MAO, HA+MAO 100, HA+MAO 150, HA+MAO 200, HA+MAO 250. The wettability of surface was observed by contact angle measurement. Biocompatibility was evaluated by cell adhesion, and cell differentiation including alkaline phosphatase activity and calcium concentration with MC3T3-E1 cells. The porous titanium oxide containing HA was formed at 150 and 200 V. These surfaces had a more hydrophilic characteristic. Biocompatibility was demonstrated that HA titania composite layer on titanium showed enhanced cell adhesion, and cell differentiation. Therefore, these results suggested that HA containing titania layer on titanium was improved biological properties that could be applied as material for dental implant system.

Soft-lithography for Manufacturing Microfabricated-Circuit Structure on Plastic Substrate (플라스틱기판 미세회로구조 제조를 위한 소프트 석판 기술의 적용)

  • Park, Min-Jung;Ju, Heong-Kyu;Park, Jin-Won
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.929-932
    • /
    • 2012
  • Novel platform technology has been developed to replace the photolithography used currently for manufacturing semiconductors and display devices. As a substrate, plastics, especially polycarbonates, have been considered for future application such as flexible display. Other plastics, i.e. polyimide, polyetheretherketon, and polyethersulfone developed for the substrate at this moment, are available for photolithography due to their high glass transition temperature, instead of high price. After thin polystyrene film was coated on the polycarbonate substrate, microstructure of the film was formed with polydimethylsiloxane template over the glass transition temperature of the polystyrene. The surface of the structure was treated with potassium permanganate and octadecyltrimethoxysilane so that the surface became hydrophobic. After this surface treatment, the nanoparticles dispersed in aqueous solution were aligned in the structure followed by evaporation of the DI water. Without the treatment, the nanoparticles were placed on the undesired region of the structure. Therefore, the interfacial interaction was also utilized for the nanoparticle alignment. The surface was analyzed using X-ray photoelectron spectrometer. The evaporation of the solvent occurred after several drops of the solution where the hydrophilic nanoparticles were dispersed. During the evaporation, the alignment was precisely guided by the physical structure and the interfacial interaction. The alignment was applied to the electric device.

Fabrication and properties of superhydrophobic $SiO_2$ thin film by sol-gel method (Sol-gel 법에 의한 초발수 $SiO_2$ 박막의 제조 및 특성)

  • Kim, Jin-Ho;Hwang, Jong-Hee;Lim, Tae-Young;Kim, Sae-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.6
    • /
    • pp.277-281
    • /
    • 2009
  • Superhydrophobic $SiO_2$ thin films were successfully fabricated on a glass substrate by sol-gel method. To fabricate $SiO_2$ thin film with a high roughness, $SiO_2$ nano particles were added into tetraethoxysilane (TEOS) solution. The prepared $SiO_2$ thin film without an addition of $SiO_2$ nano particles showed a very flat surface with ca. 1.27 nm of root mean square (RMS) roughness. Otherwise, the $SiO_2$ thin films fabricated by using coating solutions added $SiO_2$ nano particles of 1.0, 2.0 and 3.0 wt% showed a RMS roughness of ca. 44.10 nm, ca. 69.58 nm, ca. 80.66 nm, respectively. To modify the surfaces of $SiO_2$ thin films to hydrophobic surface, a hydrophobic treatment was carried out using a fluoroalkyltrimethoxysilane (FAS). The $SiO_2$ thin films with a high rough surface were changed from hydrophilic to hydrophobic surface after the FAS treatment. Especially, the prepared $SiO_2$ thin film with a RMS roughness of 80.66 nm showed a water contact angle of $163^{\circ}$.

Synthesis of Silica Nanoparticles Having the Controlled Size and their Application for the Preparation of Polymeric Composites (크기가 제어된 실리카 나노입자 합성과 제조된 입자의 고분자계 복합재 응용)

  • Kim, Jong-Woung;Kim, Chang-Keun
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.75-79
    • /
    • 2006
  • Silica nanoparticles for polymeric dental restorative composites were prepared by Stober method, and then the effects of surface treatment of silica particles with Lmethacrylofpropyltrimethofsilane $(\gamma-MPS)$ on the dispersity of the silica particles in the organic matrix was investigated. Particles having various average size were prepared by using controlled amounts of tetraethylorthosilicate(TEOS), water, and catalyst and by changing solvent used for reaction. The site of particles prepared by using methanol as solvent was smaller than that prepared by using ethanol as solvent. In addition, the size of particles was increased by decreasing amounts of water and by increasing amounts of TEOS and catalyst. Hydrophobic silica nanoparticles was prepared by reacting hydrophilic nanoparticles with $\gamma-MPS$ to improve interfacial properties with organic matrix. Amounts of $\gamma-MPS$ per unit mass of the particles was increased by decreasing particle size. even though the amount of $\gamma-MPS$ per specific surface area were nearly the same regardless of the particle size. The dispersity of the silica particles in the organic matrix was improved when the surface treated silica particles were used for preparing the polymeric dental restorative composites.

Comparison of sandblasted and acid-etched surface implants and new hydrophilic surface implants in the posterior maxilla using a 3-month early-loading protocol: a randomized controlled trial

  • Kim, Hyeong Gi;Yun, Pil-Young;Kim, Young-Kyun;Kim, Il-hyung
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.47 no.3
    • /
    • pp.175-182
    • /
    • 2021
  • Objectives: In this prospective randomized controlled trial, we measured the primary and secondary stability of two surface-treated implants placed in the posterior maxilla, applied 3-month loading protocols, and compared and analyzed the short-term outcomes of the implants. Patients and Methods: From June 2018 to June 2019, patients with a residual bone height of 4 mm in the posterior maxilla were enrolled and randomly divided into two groups to place SA implants (Osstem Implants, Korea) in Group A and NH implants (Hiossen, USA) in Group B. Finally, 14 implants placed in 13 patients in Group A and 17 implants placed in 14 patients in Group B were analyzed. The measured primary and secondary stability of each implant was represented by implant stability quotient (ISQ), and treatment outcomes were evaluated. Results: Group A consisted of patients with an average age of 62.2 years (range, 48-80 years), and Group B consisted of patients with an average age of 58.1 years (range, 35-82 years). Primary stability was 73.86±6.40 and 71.24±5.32 in Groups A and B, respectively (P=0.222). Secondary stability was 79.07±5.21 in Group A and 78.29±4.74 in Group B (P=0.667). A steep increase in ISQ during the healing period was observed in Group B, though it was not significant (P=0.265). The mean follow-up period was 378.5±164.6 days in Group A and 385.3±167.9 days in Group B. All implants in each group met the success criteria, and the success rate was 100%. Conclusion: Two surface-treated implants placed in the posterior maxilla with greater than 4 mm alveolar bone height exhibited successful one-year treatment outcomes if a primary stability of 65 or higher ISQ was obtained and a 3-month early loading protocol was applied.

Study on CO2/N2 Mixture Gas Permeation Behavior through Polyethersulfone Membrane Treated by Plasma (플라즈마 처리된 폴리이써설폰 막의 CO2/N2 혼합가스의 투과거동에 대한 연구)

  • Park, Hee-Jin;Noh, Sang-Ho;Bae, Seong-Youl;Moon, Sei-Ki
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.687-693
    • /
    • 2002
  • The surface of polyethersulfone(PES) membrane treated by Ar, $NH_3$ plasma, and the effects were observed before and after the treatment. The membrane treated by Ar plasma was increased the O/C ratio and measured the hydrophilic group, and the one by $NH_3$ plasma was attached the amine group and the amino group. In addition, with the wettability of polyethersulfone membrane $CO_2$ and the polar functional groups of surface interacted increasingly. Thus by comparable increase of the soluble selectivity $CO_2$ to $N_2$ both the permeability and the selectivity of $CO_2$ was improved. The optimum condition for the $CO_2$ permeation and actual separation factor of the plasma treated membrane was as follows; the measurement of Ar-10 W-2 min plasma treatment was $13.19{\times}10^{-10}cm^3(STP)cm/cm^2{\cdot}s{\cdot}cmHg$ and 20.12, and the measurement of $NH_3$-50 W-2 min plasma treatment was $15.40{\times}10^{-10}cm^3(STP)cm/cm^2{\cdot}s{\cdot}cmHg$ and 20.06.

Improvement of Platinum Particle Dispersion on Porous Electrode for Phosphoric Acid Fuel Cell (연료전지용 다공성전극에 있어서 백금촉매의 분산성개선)

  • Park, Jung-Il;Kim, Jo-Woong;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.224-231
    • /
    • 1990
  • To improve the dispersion of platinum catalyst, the effects of carbon black surface treatment, solvents, surfactants, and ultrasonic homogenizing were examined. Upon introducing the hydrophilic groups acting as an anchorage center of the catalyst on the surface of carbon black by oxidation, the migrating and growing of platinum particles(or ions) during reduction could be restricted. When mixed solvents, surfactants, or ultrasonic homogenizer were used to disperse catalysts on the carbon black, the dispersion of catalyst could be improved, due to the good permeation of chloroplatinic acid through the pore of carbon black. Among the impregnation methods, the method using ultrasonic homogenizer with mixed solvent was the most excellent. Using this method the particle sized could be minimized in less than $30A^{\circ}$ and distributed homogeneously.

  • PDF

A Small GTPase RHO2 Plays an Important Role in Pre-infection Development in the Rice Blast Pathogen Magnaporthe oryzae

  • Fu, Teng;Kim, Joon-Oh;Han, Joon-Hee;Gumilang, Adiyantara;Lee, Yong-Hwan;Kim, Kyoung Su
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.470-479
    • /
    • 2018
  • The rice blast pathogen Magnaporthe oryzae is a global threat to rice production. Here we characterized RHO2 gene (MGG_02457) that belongs to the Rho GTPase family, using a deletion mutant. This mutant ${\Delta}Morho2$ exhibited no defects in conidiation and germination but developed only 6% of appressoria in response to a hydrophobic surface when compared to the wild-type progenitor. This result indicates that MoRHO2 plays a role in appressorium development. Furthermore, exogenous cAMP treatment on the mutant led to appressoria that exhibited abnormal morphology on both hydrophobic and hydrophilic surfaces. These outcomes suggested the involvement of MoRHO2 in cAMP-mediated appressorium development. ${\Delta}Morho2$ mutation also delayed the development of appressorium-like structures (ALS) at hyphal tips on hydrophobic surface, which were also abnormally shaped. These results suggested that MoRHO2 is involved in morphological development of appressoria and ALS from conidia and hyphae, respectively. As expected, ${\Delta}Morho2$ mutant was defective in plant penetration, but was still able to cause lesions, albeit at a reduced rate on wounded plants. These results implied that MoRHO2 plays a role in M. oryzae virulence as well.

ANALYSIS OF THE EFFECT OF HYDROXYL GROUPS IN SILICON DIRECT BONDING USING FT-IR (규소 기판 접합에 있어서 FT-IR을 이용한 수산화기의 영향에 관한 해석)

  • Park, Se-Kwang;Kwon, Ki-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.74-80
    • /
    • 1994
  • Silicon direct bonding technology is very attractive for both silicon-on-insulator devices and sensor fabrication because of its thermal stress free structure and stability. The process of SDB includes hydration of silicon wafer and heat treatment in a wet oxidation furnace. After hydration process, hydroxyl groups of silicon wafer were analyzed by using Fourier transformation-infrared spectroscopy. In case of hydrophilic treatment using a ($H_{2}O_{2}\;:\;H_{2}SO_{4}$) solution, hydroxyl groups are observed in a broad band around the 3474 $cm^{-1}$ region. However, hydroxyl groups do not appear in case of diluted HF solution. The bonded wafer was etched by using tetramethylammonium hydroxide etchant. The surface of the self etch-stopped silicon dioxide is completely flat, so that it can be used as sensor applications such as pressure, flow and acceleration, etc..

  • PDF