• 제목/요약/키워드: Hydromechanical Transmission

검색결과 10건 처리시간 0.023초

정유압기계식 무단변속기의 변속조향성능해석 (Shifting and Steering Performance Analysis of Hydromechanical Continuous Variable Transmission)

  • 강서익
    • 한국생산제조학회지
    • /
    • 제4권2호
    • /
    • pp.25-30
    • /
    • 1995
  • The shifting and steering performance of the tracked vehicle with the hydromechanical continuous variable transmission is analyzed. The simulation results are closely similar to both the vehicle test result, As a result of hydromechanical transmission simulation, power circulation in 2nd and 3rd range is maximum 142% And power flow of mechanical part has the relationship with the effeciency of the vehicle and transmission.

  • PDF

무단변속용 정유압기계식 변속기 탑재 구동계의 성능해석 (Performance Analysis of the Vehicle With Hydromechanical Transmission)

  • 송창섭;강서익
    • 한국정밀공학회지
    • /
    • 제12권7호
    • /
    • pp.131-137
    • /
    • 1995
  • The performance analysis is applied to the transmission of the tracked vehicle, comparing simulation results with vehicle test. The calculation method of hydrostatic pump/motor performance and power circulation is used for hydromechanical transmission simulation. And various shifting characteristics is analyzed by studying power flow at each range.

  • PDF

Characteristic Analysis of Planetary Gear Set of Hydromechanical Transmission System of Agricultural Tractors

  • Park, Young-Jun;Kim, Jeong-Gil;Lee, Geun-Ho
    • Journal of Biosystems Engineering
    • /
    • 제41권3호
    • /
    • pp.145-152
    • /
    • 2016
  • Purpose: This study aims to establish the effect of pinhole position errors in the planet carrier of a planetary gear set (PGS) on load sharing among the planet gears in the hydromechanical transmission (HMT) system of an agricultural tractor. Methods: A simulation model of a PGS with five planet gears was developed to analyze load sharing among the planet gears. The simulation model was verified by comparing i ts r esults w ith those of a model developed in a previous s tudy. The verified simulation model was used to analyze the load-sharing characteristics of the planet gears with respect to the pinhole position error and the input torque to the PGS. Results: Both simulation models had identical load magnitude sequences for the five planet gears. However, the load magnitudes on the corresponding planet gears differed between the models because of the different stiffnesses of the PGS components and the input torques to the PGS. The verified simulation model demonstrated that the evenness of load sharing among the planet gears increases with decreasing pinhole position error and increasing input torque. Conclusions: The geometrical tolerance of the pinhole position should be properly considered during the design of the planet carrier to improve the service life of the PGS and load sharing among the planet gears.

정유압기계식 변속장치의 동력특성해석 (Power Characteristics Analysis of Hydro-Mechanical Transmission)

  • 성덕환;이근호;김현수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.519-524
    • /
    • 2001
  • In this paper, power flow characteristics of a hydromechanical transmission(HMT) are investigated using network analysis. The HMT used in this study consist of a hydrostatic unit(HSU), planetary gear sets, clutches and brakes providing forward 4 speeds and backward 2 speeds. Since the HMT power flows showing a closed loop and the HSU efficiency varies depending on the pressure and speed, a systematic approach is required to analyze the power transmission characteristics of the HMT. In order to analyze the closed loop power flow and the HSU power loss which changes depending on the pressure and speed, network model is constructed for each speed range. In addition, an algorithm is proposed to calculate an accurate HSU loss corresponding to the experimental results. It is found from the network analysis that the torque and speed of each transmission element including the HSU can be obtained as well as direction of the power flow by the proposed algorithm. It is expected that the network analysis can be used in the design of relatively complicated transmission system such as HMT.

  • PDF

HSU의 유량손실을 고려한 정유압 기계식 변속기의 동력특성 해석 (Analysis of Power Characteristics for a Hydromechanical Transmission Considering HSU Flow Loss)

  • 성덕환;이근호;김형의;김현수
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1149-1158
    • /
    • 2002
  • An improved hydrostatic unit(HSU) model is proposed by considering the flow loss in order to analyze the power flow characteristics of a hydromechanical transmission(HMT) and a network analysis algorithm is presented to determine the torque and speed of each element of the HMT. To calculate the torque and flow loss of a pump and a motor in HSU, an effort and flow concept is introduced, which can be used to establish a torque and speed matrix in the network analysis. It is found from the network analysis that magnitude of the HSU stroke increases to maintain the same output speed in order to compensate the flow Boss in the HSU and the efficiency of the HMT shows the lowest value in the 1st speed since the HSU has the largest flow loss in the 1st speed and the flow loss decreases as the speed ratio upshifts.

동력특성과 속도비를 고려한 3축 정유압 기계식 변속기의 설계 연구 (A Study on 3 Shaft Hydromechanical Transmission Design Considering Power and Speed Characteristics)

  • 성덕환;김현수
    • 대한기계학회논문집A
    • /
    • 제26권12호
    • /
    • pp.2615-2623
    • /
    • 2002
  • In this paper, a systematic design approach for a three shaft hydromechanical transmission(HMT) system is proposed by considering the power characteristics and speed ratio range. Using network analysis, possible configurations of the 3 shaft HMT are analyzed and it is found that the influence of HSU stroke on the power distribution of the HMT can be investigated by the network analysis. In addition, design methods are presented from the viewpoint of (1) power distribution and (2) speed ratio range. From the power distribution and the speed ratio range, a HMT configuration can be constructed, which minimizes the power circulation and provides the desired speed ranges. Based on the 3 shaft HMT analyses and the proposed design approach, a 3 shaft HMT is designed which provides 4 speeds in forward and 1 speed in reverse while keeping the power circulation less than 150% of the input power. It is expected that the design method suggested in this study can be used in a systematic design of the 3 shaft HMT.

정유압 기계식 변속기 에뮬레이터의 설계 및 제작 (A Design and Fabrication of Hydromechanical Transmission Emulator)

  • 방호균;이병선;김두근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.1078-1082
    • /
    • 1996
  • 기계적 구동장치와 연계된 메카트로닉스 시스템에 대한 개발 시험은 비용, 공간 및 시간 등의 측면에서 제약을 받는다. 이러한 제약은 에뮬레이터를 이용한 개발 과정을 통해서 개선의 효과를 얻을 수 있다. 본 연구에서 설계 제작된 에뮬레이터는 전자 제어식 변속기에 적용된 장치로서 기계적 메카니즘 없이 전자 제어 메카니즘을 완전하게 에뮬레이션 할 수 있는 가능성을 보여준 것이다. 이러한 에뮬레이터를 이용하여 전자 제어장치의 개발 기간을 단축시키고 문제점을 빠르게 찾아낼 수 있다. 에뮬레이터의 개발은 수학적 모델링에 의해서, 장치에 대한 검증은 실차 시험을 통해 얻을 결과와 비교하여 수행된다.

  • PDF

정유압 기계식 변속장치의 동력전달특성 (Power Transmission Characteristics of a Hydro-Mechanical Transmission)

  • 성덕환;김형의;이근호;김현수
    • 대한기계학회논문집A
    • /
    • 제25권11호
    • /
    • pp.1854-1862
    • /
    • 2001
  • In this paper, power flow characteristics of a hydromechanical transmission(HMT) are investigated using network analysis. The HMT used in this study consist of a hydrostatic unit(HSU), planetary gear sets, clutches and brakes providing forward 4 speeds and backward 2 speeds. Since the HMT power flows showing a closed loop and the HSU efficiency varies depending on the pressure and speed, a systematic approach is required to analyze the power transmission characteristics of the HMT. In order to analyze the closed loop power flow and the HSU power loss which changes depending on the pressure and speed, network model is constructed fur each speed range. In addition, an algorithm is proposed to calculate an accurate HSU loss corresponding to the experimental results. It is found from the network analysis that the torque and speed of each transmission element including the HSU can be obtained as well as direction of the power flow by the proposed algorithm. It is expected that the network analysis can be used in the design of relatively complicated transmission system such as HMT.

Numerical modeling on the stability of slope with foundation during rainfall

  • Tran, An T.P.;Kim, Ah-Ram;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • 제17권1호
    • /
    • pp.109-118
    • /
    • 2019
  • The movement of soil along a slope during rainfall can cause serious economic damage and can jeopardize human life. Accordingly, predicting slope stability during rainfall is a major issue in geotechnical engineering. Due to rainwater penetrating the soil, the negative pore water pressure will decrease, in turn causing a loss of shear strength in the soil and ultimately slope failure. More seriously, many constructions such as houses and transmission towers built in/on slopes are at risk when the slopes fail. In this study, the numerical simulation using 2D finite difference program, which can solve a fully coupled hydromechanical problems, was used to evaluate the effects of soil properties, rainfall conditions, and the location of a foundation on the slope instability and slope failure mechanisms during rainfall. A slope with a transmission tower located in Namyangju, South Korea was analyzed in this study. The results showed that the correlation between permeability and rainfall intensity had an important role in changing the pore water pressure via controlling the infiltrated rainwater. The foundation of the transmission tower was stable during rainfall because the slope failure was estimated to occur at the toe of the slope, and did not go through the foundation.