• 제목/요약/키워드: Hydrolysis Resistance

검색결과 87건 처리시간 0.031초

태양전지모듈용 고내구성 저가형 백시트 (Low-costBacksheet Materials with Excellent Resistance to Chemical Degradation for Photovoltaic Modules)

  • 표세연;이창현
    • 멤브레인
    • /
    • 제25권3호
    • /
    • pp.287-294
    • /
    • 2015
  • 태양전지는 태양복사에너지를 반도체의 광전효과를 통해 전기에너지로 변환시키는 친환경 에너지변환장치를 의미한다. 수분을 포함하는 다양한 화학물질들에 대한 높은 차단성을 갖는 다층형 필름인 백시트는 태양전지의 중요한 요소이다. 대표적인 백시트는 polyvinyl fluoride (PVF)와 poly(ethylene terephthalate) (PET)의 다층필름으로 구성된다. PVF는 높은 내후성을 가지는 반면, 가격이 상대적으로 비싼 단점을 보인다. 따라서, 백시트의 제조가격을 낮출 수 있으면서, 동시에 실제 태양전지모듈에 적용할만한 수명특성을 만족시킬 수 있는 대체소재의 개발이 필수적이다. 본 연구에서는 일정수준의 결정성을 갖는 PET 필름을 PVF 필름 대신 사용하였다. 그러나, PET 소재는 다양한 pH 조건에서 trans-esterification 및 가수분해에 의해 분해될 수 있기 때문에, 태양전지의 구동조건에서 PET의 분해거동을 이해할 필요가 있다. 단시간 내 화학적 분해거동을 평가하기 위해서, 가속화된 PET 분해실험 프로토콜이 개발되었다. 마지막으로, 제안 개념의 효용성은 태양전지모듈의 장기운전성능 평가를 통해 확인하였다.

상용 휘발유로부터 분리한 다환 방향족 탄화수소(PAH) 분해 세균의 특성 (Characterization of PAH (Polycyclic Aromatic Hydrocarbon)-Degrading Bacteria Isolated from Commercial Gasoline)

  • 권태형;우정희;박년호;김종식
    • 한국환경농학회지
    • /
    • 제34권3호
    • /
    • pp.244-251
    • /
    • 2015
  • BACKGROUND: Recent studies have described the importance of bacteria that can degrade polycyclic aromatic hydrocarbons (PAHs). Here we screened bacterial isolates from commercial gasoline for PAH degraders and characterized their ability to degrade PAHs, lipids and proteins as well as their enantioselective epoxide hydrolase activity, salt tolerance, and seawater survival. METHODS AND RESULTS: One hundred two bacteria isolates from commercial gasoline were screened for PAH degraders by adding selected PAHs on to the surface of agar plates by the sublimation method. A clear zone was found only around the colonies of PAH degraders, which accounted for 13 isolates. These were identified as belonging to Bacillus sp., Brevibacterium sp., Micrococcus sp., Corynebacterium sp., Arthrobacter sp., and Gordonia sp. based on 16S rRNA sequences. Six isolates belonging to Corynebacterium sp., 3 of Micrococcus sp., Arthrobacter sp. S49, and Gordonia sp. H37 were lipid degraders. Arthrobacter sp. S49 was the only isolate showing high proteolytic activity. Among the PAH-degrading bacteria, Arthrobacter sp. S49, Brevibacterium sp. S47, Corynebacterium sp. SK20, and Gordonia sp. H37 showed enantioselective epoxide hydrolase activity with biocatalytic resolution of racemic styrene oxide. Among these, highest enantioselective hydrolysis activity was seen in Gordonia sp. H37. An intrinsic resistance to kanamycin was observed in most of the isolates and Corynebacterium sp. SK20 showed resistance to additional antibiotics such as tetracycline, ampicillin, and penicillin. CONCLUSION: Of the 13 PAH-degraders isolated from commercial gasoline, Arthrobacter sp. S49 showed the highest lipid and protein degrading activity along with high active epoxide hydrolase activity, which was the highest in Gordonia sp. H37. Our results suggest that bacteria from commercial gasoline may have the potential to degrade PAHs, lipids, and proteins, and may possess enantioselective epoxide hydrolase activity, high salt tolerance, and growth potential in seawater.

나노합성 세라믹계 도장재를 도포한 콘크리트의 내구성능 (Durability Characteristics of Concrete with Nano Level Ceramic Based Coating)

  • 김성수;이정배;한승우
    • 콘크리트학회논문집
    • /
    • 제19권5호
    • /
    • pp.639-646
    • /
    • 2007
  • 본 연구에서는 환경에 유해한 휘발성 유기화합물 (VOC)을 사용하지 않은 나노합성 세라믹 도장재를 도포한 콘크리트의 내구성 증진 효과를 평가하기 위하여 건조상태 부착강도 실험, 습윤상태 부착강도 실험, SEM 촬영, MIP 분석, 탄산화 촉진 실험, 전기적 촉진법에 의한 염소이온 확산실험, 동결융해에 대한 저항성, 내알칼리 실험 및 내염수성 실험을 실시하여 기존의 표면처리제와 비교 평가하였다. 부착강도 측정 결과 나노합성 세라믹 도장재가 건조상태 및 습윤상태에서 가장 이상적인 결과를 나타내었는데 이는 가수분해와 중축합반응을 통하여 무기질계 세라믹 구조를 형성한 나노합성 세라믹이 콘크리트 내의 C-A-S (calcium silicate aluminate)나 C-S-H (calcium silicate hydrate)와 같은 수화물과의 수소결합을 통해 콘크리트 표면과 일체화되어 나타난 결과로 판단된다. 또한 SEM 및 MIP 분석의 결과를 통해 미세한 공극을 가진 표면 조직을 보여주었다. 그리고 탄산화 및 염소이온 확산 실험과 동결융해 저항성에서 기존의 유기도장재를 능가하는 결과를 보였으며 내알칼리성 및 내염수성 실험에서도 좋은 성능을 나타내었다. 이상의 결과를 통해 기존의 휘발성 유기화합물을 사용하는 유기도장재의 대안으로써 해안 구조물, 하수 처리장 등 콘크리트 구조물의 내구성 향상을 위한 나노합성 세라믹 도장재의 사용이 기대된다.

법랑질에 의한 수종의 간접복합레진의 마모에 관한 연구 (AN IN-VITRO WEAR STUDY OF INDIRECT COMPOSITE RESINS AGAINST HUMAN ENAMEL)

  • 이현정;전영찬;정창모;정희찬
    • 대한치과보철학회지
    • /
    • 제45권5호
    • /
    • pp.611-620
    • /
    • 2007
  • Statement of problem: Second-generation indirect composite resins have been improved flexural strength, compressive strength, hydrolytic degradation resistance, wear resistance compared to first-generation indirect composite resins, but there are still some problems as hydrolysis and low wear resistance. Some manufacturers claim that wear resistance of their materials has been improved, but little independent study has been published on wear properties of these materials and the properties specified in the advertising materials are largely derived from in-house or contracted testing. Purpose: This study was to evaluate the wear of indirect composite resins (SR Adore, Sinfony, Tescera ATL) and gold alloy against the human enamel. Material and method: Extracted human incisors and premolars were sectioned to $2{\times}2{\times}2mm$ cube and embedded in the clear resin and formed conical shaped antagonist to fit the jig of pin-on-disk tribometer. Total 20 antagonists were stored in distilled water. Five disk samples, 24mm in diameter and 1.5mm thick, were made for each of three groups of indirect composite resins and gold alloy group, and polished to #2,000 SiC paper on auto-polishing machine. Disk specimens were tested for wear against enamel antagonists. Wear test were conducted in distilled water using a pin-on-disk tribometer under condition (sliding speed 200rpm contact load 24N, sliding distance 160m). The wear of the enamel was determined by weighing the enamel antagonist before and after test, and the weight was converted to volumes by average density. The wear tracks were analyzed by scanning electron microscopy and surface profilometer to elucidate the wear mechanisms. Statistical analysis of the enamel wear volume, wear track depth and wear tract width of disk specimens were accomplished with one-way ANOVA and the means were compared for significant differences with Scheffe's test. Results: 1. The enamel wear was most in gold alloy, but there were no statistically significant differences among all the groups (P>.05). 2. In indirect composite resin groups, the group to make the most shallow depth of wear tract was Sinfony, followed by Tescera ATL, SR Adoro (P<.05). Gold alloy was shallower than Sinfony, but there was no statistically significant difference between Sinfony and gold alloy (P>.05). 3. The width of wear tract of SR Adore was larger than the other groups (P<.05), and there were no statistically significant differences among the other groups (P>.05). 4. SEM analysis revealed that Sinfony and gold alloy showed less wear scars after test, Tescera ATL showed more wear scars and SR Adore showed the most. Conclusion: Within the limits of this study, Sinfony and gold alloy showed the least wear rates and showed similar wear patterns.

고열전도도 MgO를 이용한 열전도성 PV(PhotoVoltaic) 백시트의 연구 (Study on Thermal Conductive PV(PhotoVoltaic) Backsheet using MgO Masterbatch with High Thermal Conductivity)

  • 김창희;장현태;박종세;윤종국;노은섭;박지수;구경완
    • 전기학회논문지
    • /
    • 제67권3호
    • /
    • pp.448-453
    • /
    • 2018
  • PV module protective film plays an important role in protecting the solar cell from external environment by anti-hydrolysis polyester, UV resistance and mechanical properties. The backsheet was manufactured by using Roll-to-Roll dry laminating process. The backsheet structure is composed of 3 layers, which are PE, PET, and Fluorine polymer films. In this study, we have experimented the variation of thermal conductivities depending on MgO inputs 10% to 25% in order to confirm the dependence of the module efficiencies. High thermal conductive backsheet can increase the module output power efficiency because the heat is dissipated by spreading out the internal heat. Long-term environment weatherability tests were conducted for confirming 25 year reliability in the field such as PCT, UV, and power efficiency degradations. As the evaluation result, high thermal conductivity can be effective for increase of power efficiency of solar panel by using thermal conductive MgO masterbatch.

Purification and Characterization of the Lipase from Acinetobacter sp. B2

  • Sohn, Sung-Hwa;Park, Kyeong-Ryang
    • Molecular & Cellular Toxicology
    • /
    • 제1권3호
    • /
    • pp.189-195
    • /
    • 2005
  • Industrial development has increase consumption of crude oil and environmental pollution. A large number of microbial lipolytic enzymes have been identified and characterized to date. To development for a new lipase with catalytic activity in degradation of crude oil as a microbial enzyme, Acinetobactor sp. B2 was isolated from soil samples that were contaminated with oil in Daejon area. Acinetobactor sp. B2 showed high resistance up to 10 mg/mL unit to heavy metals such as Ba, Li, Al, Cr, Pb and Mn. Optimal growth condition of Acinetobactor sp. B2 was confirmed $30^{\circ}C$. Lipase was purified from the supernatant by Acinetobactor sp. B2. Its molecular mass was determined to the 60 kDa and the optimal activity was shown at $40^{\circ}C$ and pH 10. The activation energies for the hydrolysis of p-nitrophenyl palmitate were determined to be 2.7 kcal/mol in the temperature range 4 to $37^{\circ}C$. The enzyme was unstable at temperatures higher than $60^{\circ}C$. The Michaelis constant $(K_{m})\;and\;V_{max}$ for p-nitrophenyl palmitate were $21.8{\mu}M\;and\;270.3{\mu}M\;min^{-1}mg\;of\;protein^{-1}$, respectively. The enzyme was strongly inhibited by $Cd{2+},\;Co^{2+},\;Fe^{2+},\;Hg^{2+},\;EDTA$, 2-Mercaptoethalol. From these results, we suggested that lipase purified from Acinetobactor sp. B2 should be able to be used as a new enzyme for degradation of crude oil, one of the environmental contaminants.

GRC 제조용 내알칼리성 지르코니아계 고분자 겔섬유에 관한 연구 (Study on the Polymer Gel Fiber of Alkali Resistance Zirconia System for GRC)

  • 신대용;한상목;김경남;강위수
    • 한국세라믹학회지
    • /
    • 제31권8호
    • /
    • pp.934-940
    • /
    • 1994
  • Fibers of ZrO2-SiO2 system were prepared from the hydrolysis and condensation of Si(OC2H5)4 and Zr(OnC3H7)4 with different H2O/alkoxide molar ratios. It was found that fibers could be drawn in the viscosity range of 1~100 poise from HCl catalyzed solutions with lower water contents of the mole ratio H2O/alkoxide, r 2. The fibrous gels were converted into the corresponding oxide glass fibers by heating at 80$0^{\circ}C$. Mechanical test was performed on E, A and 20ZrO2-80SiO2 glass fibers reinforced cement in order to investigate the flexural strength. The flexural strength value of 20ZrO2-80SiO2 glass fibers reinforced cement was greater than those of E and A. The chemical durability of the fibers in alkaline solutions increased with ZrO2 content. The weight loss due to the corrosion by 2N-NaOH solutions at $25^{\circ}C$ for 160 hours was about 0.31$\times$10-2 mg/dm2 for the 20ZrO2-80SiO2 glass fibers, which was superior to that of Vycor glass.

  • PDF

Evolution of a dextransucrase gene for constitutive and hyper-production and for synthesis of new structure dextran

  • 강희경;김도만;장석상
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.545-549
    • /
    • 2003
  • After irradiation of a cloned dextransucrase gene (dsrB742) with ultrasoft X-ray, an E. coli transformant (pDSRB742CK) was first developed for the expression of an extracellular dextransucrase, having increased activity and the synthesis of a highly branched dextran. Seven nucleotides of the parent gene (dsrB742) were changed in the nucleotide sequences of dsrB742ck. Among them, four nucleotides were changed at the ORF of dsrB742, resulting in a 30 amino acids deletion in the N-terminal of DSRB742 dextransucrase. The activity of DSRB742CK dextransucrase in culture supernatant was approximately 2.6 times higher (0.035 IU/ml) than that of the DSRB742 clone. The pDSRB742CK clone produced DSRB742CK dextransucrase when grown both on a sucrose medium (inducibly) and on a glucose medium (constitutively). The DSRB742 clone did not produce dextran constitutively on a glucose medium. DSRB742CK dextran had 15.6% branching and 2.7-times higher resistance to dextranase hydrolysis compared to DSRB742 dextran. $^{13}C-NMR$ showed that DSRB742CK dextran contained ${\alpha}-(1{\rightarrow}3)$ branch linkages that were not present in DSRB742 dextran.

  • PDF

초음파 처리한 하수 슬러지의 가용화와 탈수 특성 연구 (A Study on the Solubilization and Dewaterability of Ultrasonically Treated Wastewater Sludge)

  • 윤유식;김동진;유익근;안대희
    • 한국환경과학회지
    • /
    • 제18권6호
    • /
    • pp.675-682
    • /
    • 2009
  • Sludge minimization from wastewater treatment plant is becoming more important to save disposal costs and to contribute to sustainable development. For the reduction of sludge production, solubilization and dewaterability of sludge are important factors in sludge processing. Ultrasonic treatment has been used to enhance sludge solubility and dewaterability with anaerobic digestion sludge, primary sludge, and activated sludge. At the ultrasonic power of 0.2 kW/L for 1 hour, anaerobic sludge and activated sludge showed higher solubilization efficiency than the primary sludge in terms of COD, proteins, and suspended solids. Ultrasonic treatment decreased sludge dewaterability and sludge settling characteristics up to 720 kJ/L of ultrasonic energy. In conclusion, ultrasonic treatment was effective for sludge solubilization but it deteriorate dewaterability (specific resistance) and settling characteristics (SVI) of sludge at the experimental conditions.

실란 바인더에 의한 탄소나노튜브 박막의 감습 특성 변화 (The Variation of Response on Humidity in CNT Thin Film by Silane Binders)

  • 김성진
    • 한국전기전자재료학회논문지
    • /
    • 제23권10호
    • /
    • pp.782-787
    • /
    • 2010
  • Recently the solution-based thin film technology has often been treated in the field of device fabrication owing to easy process and convenience for the development of various semiconductor devices and sensors. We deposited on glass substrate single-walled carbon nanotubes (SWNTs)/silane hybrid thin films by multiple spray-coating which is one of solution-based processes, and examined their electrical response for humidity. Generally silane binders which are often mixed in carbon nanotube (CNT) solution to adhere CNTs to substrate well form easily each own functionalized group on the surface of CNTs after they are hardened by way of the hydrolysis reaction. In this work, we investigated how silane binders (TEOS (tetraethoxy silane), MTMS (methyltrimethoxysilane) and VTMS (vinyltrimethoxysilane)) in CNT thin films make effect to their electrical response on humidity. As the result, we found that the resistance in the samples using TEOS was changed dramatically while it was almost invariant in the samples using MTMS and VTMS for increasing humidity.