DOI QR코드

DOI QR Code

The Variation of Response on Humidity in CNT Thin Film by Silane Binders

실란 바인더에 의한 탄소나노튜브 박막의 감습 특성 변화

  • Kim, Seong-Jeen (Department of Electronic Engineering, Kyungnam University)
  • 김성진 (경남대학교 전자공학과)
  • Received : 2010.08.05
  • Accepted : 2010.09.16
  • Published : 2010.10.01

Abstract

Recently the solution-based thin film technology has often been treated in the field of device fabrication owing to easy process and convenience for the development of various semiconductor devices and sensors. We deposited on glass substrate single-walled carbon nanotubes (SWNTs)/silane hybrid thin films by multiple spray-coating which is one of solution-based processes, and examined their electrical response for humidity. Generally silane binders which are often mixed in carbon nanotube (CNT) solution to adhere CNTs to substrate well form easily each own functionalized group on the surface of CNTs after they are hardened by way of the hydrolysis reaction. In this work, we investigated how silane binders (TEOS (tetraethoxy silane), MTMS (methyltrimethoxysilane) and VTMS (vinyltrimethoxysilane)) in CNT thin films make effect to their electrical response on humidity. As the result, we found that the resistance in the samples using TEOS was changed dramatically while it was almost invariant in the samples using MTMS and VTMS for increasing humidity.

Keywords

References

  1. Y. H. Lee, Sae Mulli 51, 84 (2005).
  2. N. Sinha, J. Ma, and J. Yeow, J. Nanosci. Nanotechnol. 6, 573 (2006). https://doi.org/10.1166/jnn.2006.121
  3. M. Jiang and Y. Lin, Carbon nanotube-based sensors in Encyclopedia of Sensors, Vol. 2 (American Scientific Publishers, 2006) p. 25.
  4. G. Gho, J. Noh, M. Jung, and J. Kim, Bulletin of KIEEME 22, 18 (2009).
  5. Y. Zhou, L. Hu, and G. Gruner, Appl. Phys. Lett. 88, 123109 (2006). https://doi.org/10.1063/1.2187945
  6. H. Soh, C. Quate, A. Morpurgo, C. Marcus, J. Kong, and H. Dai, Appl. Phys. Lett. 75, 627 (1999). https://doi.org/10.1063/1.124462
  7. K. S. Ahn, J. H. Kim, K. N. Lee, C. O. Kim, and J. P. Hong, J. Korean. Phys. Soc. 45, 158 (2004).
  8. Y. M. Wong, W. P. Kang, J. Davison, A. Wisitsora, and K. L. Soh, Sens. Actuators B 93, 327 (2003). https://doi.org/10.1016/S0925-4005(03)00213-2
  9. J. Wang and M. Musameh, Analyst 129, 1 (2004). https://doi.org/10.1039/b313431h
  10. K. Kordas, T. Mustonen, G. Toth, H. Jantunen, M. Lajunen, C. Soldano, S. Talpatra, S. Kar, R. Vajtai, and P. Ajayan, Small 2, 1021 (2006). https://doi.org/10.1002/smll.200600061
  11. S. Hur, D. Khang, C. Kocabas, and J. A. Rogers, Appl. Phys. Lett. 85, 5730 (2004). https://doi.org/10.1063/1.1829774
  12. M. Penza, F. Antolini, and M. Antisari, Sens. Actuators B 100, 47 (2004). https://doi.org/10.1016/j.snb.2003.12.019
  13. J. Kong, N. Franklin, C. Zhou, M. Chapline, S. Peng, K. Cho, and H. Dai, Science 287, 622 (2000). https://doi.org/10.1126/science.287.5453.622
  14. P. Qi, O. Vermesh, M. Grecu, A. Javey, Q. Wang, H. Dai, S. Peng, and K. Cho, Nano Lett. 3, 347 (2003). https://doi.org/10.1021/nl034010k
  15. J. T. Han, S. Y. Kim, J. S. Woo, and G. W. Lee, Adv. Mat. 20, 1 (2008). https://doi.org/10.1002/adma.200890067
  16. S. J. Kim, IEEE Sensors Journal 10, 173 (2010). https://doi.org/10.1109/JSEN.2009.2035218