• Title/Summary/Keyword: Hydrolysis Reaction

Search Result 999, Processing Time 0.022 seconds

Optimization of Dilute Acid Pretreatment of Rapeseed straw for the Bioethanol Production (바이오에탄올 생산을 위한 농산부산물(유채짚)의 묽은 산 전처리 공정 최적화)

  • Jeong, Tae-Su;Won, Kyung-Yoen;Oh, Kyeong-Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.67-70
    • /
    • 2008
  • Biological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide fraction into monomeric sugars. Hydrolysis can be performed enzymatically, and with dilute or concentrate mineral acids. In this study, dilute sulfuric acid used as a catalyst for the hydrolysis of rapeseed straw. The purpose of this study is to optimize the hydrolysis process in a 15ml bomb tube reactor and investigate the effects of the acid concentration, temperature and reaction time on the hemicellulose removal and consequently on the production of sugars (xylose, glucose and arabinose) as well as on the formation of by-products (furfural, 5-hydroxymethylfurfural and acetic acid). Statistical analysis was based on a model composition corresponding to a $3^3$ orthogonal factorial design and employed the response surface methodology (RSM) to optimize the hydrolysis conditions, aiming to attain maximum xylose extraction from hemicellulose of rapeseed straw. The obtained optimum conditions were: acid concentration of 0.77%, temperature of $164^{\circ}C$ with a reaction time of 18min. Under these conditions, 75.94% of the total xylose was removed and the hydrolysate contained 0.65g $L^{-1}$ Glucose, 0.36g $L^{-1}$ Arabinose, 3.59g $L^{-1}$ Xylose, 0.51g $L^{-1}$ Furfural, 1.36g $L^{-1}$ Acetic acid, and 0.08g $L^{-1}$ 5-hydroxymethylfurfural.

  • PDF

Reaction Characteristics and Kinetic Analysis of Enzymatic Hydrolysis of Corn Gluten Meal Using Alkaline Protease (Alkaline Protease를 이용한 Corn Gluten Meal의 효소가수분해 반응특성 및 반응속도론적 분석)

  • 김성진;이은규남충희
    • KSBB Journal
    • /
    • v.10 no.5
    • /
    • pp.540-546
    • /
    • 1995
  • Dry corn gluten meal of 70% protein content was enzymatically hydrolyzed by alkaline protease in a pH-state reactor. Such process variables as temperature, pH, and enzyme-to-substrate ratio were varied, and at each condition degree of hydrolysis was monitored and calculated. The ultimate degree of hydrolysis, which ranged between 25 and 28% based on gluten protein mass, was not significantly affected by the process variables. However, $50^{\circ}C$ and pH 9-10 appeared optimum. Kinetic analysis indicated enzyme deactivation was negligible during the hydrolysis, and the experimental data were near perfectly fitted to the model kinetic equation which was modified after neglecting enzyme deactivation term. The enzyme reaction was 1$100\times$ scaled up and basically the same hydrolysis performance was resulted. Amino acid analysis showed the hydrolyzate was relatively rich in glutamine/glutamic acid, leucine, and alanine at 19.6, 16.1, and 12.3 mole %, respectively.

  • PDF

Study on the Hydrogen Yield of $NaBH_4$ Hydrolysis Reaction ($NaBH_4$ 가수분해반응에서 수소 수율에 관한 연구)

  • Hwang, Byungchan;Jo, Jaeyoung;Sin, Sukjae;Choi, Daeki;Nam, Sukwoo;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.516-520
    • /
    • 2011
  • Sodium borohydride, $NaBH_4$, shows a number of advantages as hydrogen source for portable proton exchange membrane fuel cells (PEMFCs). The hydrogen yield of sodium borohydride hydrolysis reaction was studied. The effect of temperature, $NaBH_4$ concentration, NaOH concentration and catalyst type on the hydrogen yield from $NaBH_4$ hydrolysis reaction were measured. The catalysts of Co-P/Cu, Co-B/Cu and Co-P-B/Cu were used in this study and there was no different effect of these catalysts on the hydrogen yield from $NaBH_4$. Under the temperature of $60^{\circ}C$, the hydrogen yield decreased as $NaBH_4$ concentration increased due to formation of gel with by-products and reactants. The gel formed during $NaBH_4$ hydrolysis reaction diminished the hydrogen evolution rate and total volume of hydrogen. Addition of NaOH stabilizer enhanced the formation of gel and then decreased the hydrogen yield.

Hydrolysis Reaction of NaBH4 using Unsupported Co-B, Co-P-B Catalyst (비담지 Co-B, Co-P-B 촉매를 이용한 NaBH4 가수분해 반응)

  • Oh, Sung-June;Jung, Hyeon-Seong;Jeong, Jae-Jin;Na, Il-Chai;Ahn, Ho-Geun;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.11-15
    • /
    • 2015
  • Sodium borohydride, $NaBH_4$, shows a number of advantages as hydrogen source for portable proton exchange membrane fuel cells(PEMFCs). Properties of $NaBH_4$ hydrolysis reaction using unsupported Co-B, Co-P-B catalyst were studied. BET surface area of catalyst, yield of hydrogen, effect of $NaBH_4$ concentration and durability of catalyst were measured. The BET surface area of unsupported Co-B catalyst was $75.7m^2/g$ and this value was 18 times higher than that of FeCrAlloy supported Co-B catalyst. The hydrogen yield of $NaBH_4$ hydrolysis reaction by unsupported catalysts using 20~25 wt% $NaBH_4$ solution was 97.6~98.5% in batch reactor. The hydrogen yield decrease to 95.3~97.0% as the concentration of $NaBH_4$ solution increase to 30 wt%. The loss of unsupported catalyst was less than that of FeCrAlloy supported catalyst during $NaBH_4$ hydrolysis reaction and the loss increased with increasing of $NaBH_4$ concentration. In continuous reactor, hydrogen yield of $NaBH_4$ hydrolysis was 90% using 1.2 g of unsupported Co-P-B catalyst with $3{\ell}/min$ hydrogen generation rate.

Amino Acids Recovery from Fish Entrails by Hydrolysis in Sub- and Supercritical Water (생선내장의 아임계 및 초임계 가수분해에 의한 아미노산의 회수)

  • Kang, Kil Yoon;Kim, Yong Ha;Chun, Byung Soo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.28-33
    • /
    • 2005
  • A resource recovery technique using sub- and supercritical water hydrolysis was applied to recover amino aicds from waste fish entrails. The effect of reaction parameters such as temperature and time necessary for the control of reaction towards optimum yield of amino acids was investigated using semi-batch and batch reactors. Results showed a maximum yield of total amino acids (137 mg/g-dry entrails) from waste fish entrails at T=$250^{\circ}C$ (P=4 MPa) and reaction time of 60 min in a batch reactor. Under supercritical conditions (e.g., T=$400^{\circ}C$, P=45 MPa), the yield decreased due to rapid decomposition compared to production rate of amino acids. As a result, the low temperature and the short reaction time were needed to produce a maximum yield of amino acids.

Production of Amylase by a Filamentous Fungus, Strain FM04, and Enzymatic Hydrolysis of Food Waste (사상균 FM04에 의한 Amylase 생산 및 음식물 쓰레기의 효소학적 가수분해)

  • 김경철;배영수;김시욱;김성준
    • KSBB Journal
    • /
    • v.18 no.5
    • /
    • pp.363-370
    • /
    • 2003
  • A filamentous fungus, strain FM04 producing amylase was isolated from rotten yam peels and potatoes. The favorable conditions of cultivation factors such as, temperature, pH, and agitation speed of strain FM04 were 28∼30$^{\circ}C$, 5.0∼6.0, and 100 rpm, respectively. Starch was the best carbon source in the amylase production. Therefore, food wastes containing lots of starch were employed as the carbon source of the cultivation for the economical amylase production. 5.2 U/ml of amylase was obtained In the cultivation using 1 % (w/v) of food wastes. The amylase showed the highest activity at enzyme reaction conditions of 60$^{\circ}C$ and pH 4.5 and showed 90% of residual activity after the reaction at 50$^{\circ}C$ for 2 days. In the enzymatic hydrolysis reaction using 20% (w/v) of food wastes and 2.5 U/ml of amylase, 72.6 g/l of reducing sugar was obtained at the reaction condition of 50$^{\circ}C$, pH 4.5 for 2 days.

Hydrolysis of DFP Using Cu(II)-Lactic Acid and Cu(II)-LMWS-Chitosan Chelates (Cu(II)-Lactic Acid와 Cu(II)-LMWS-Chitosan 착물의 DFP 가수분해반응 연구)

  • Kye, Young-Sik;Jeong, Keunhong;Kim, Dongwook
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.475-480
    • /
    • 2020
  • Chelates synthesized with Cu(II) ion and lactic acid or chitosan were applied to the hydrolysis of organophosphate simulant, DFP (diisopropyl fluorophosphate). Under the homogeneous reaction condition, Cu(II)-lactic acid chelate hydrolyzed DFP with the half life time of 37.1 min. Cu(II)-LMWS chitosan chelate was synthesized with 1 kDa molecular weight of chitosan, which showed low solubility, and then crystallized. The half life time for hydrolyzing DFP using Cu(II)-LMWS chitosan was 32.9 h indicating that the reaction rate is enhanced as much as 16 times more than that of using 18 kDa chitosan-Cu(II) complex. Under the homogeneous reaction condition, the half life time of Cu(II)-LMWS chitosan was 8.75 h. Therefore, we found out that the solubility of Cu(II)-LMWS chitosan makes the difference in the reaction rate as much as 4 times.

Solubilization of Tofu-Residue Using Multienzyme Derived from Aspergillus niger CF-34 (Aspergillus niger CF-34 효소를 이용한 두부 또는 두유비지의 가용화)

  • Kim, Kang-Sung;Park, Eun-Ha;Choi, Yeon-Bae;Kim, Kyo-Chang;Lee, Sang-Hwa;Sohn, Heon-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.484-489
    • /
    • 1994
  • Solubilization of plant ceil wall(tofu-residue) using enzyme complex obtained by Aspergillus niger CF-34 was attempted. The hydrolysis reaction was done at pH 4.0, $50^{\circ}C$, which were optimum pH and temperature of the enzyme, respectively. At the enzyme dosage of 2.5% (in terms of solid content of tofu-residue) and reaction time of 3 hr, the solubilizing percent of protein and carbohydrate were 62% and 50% respectively. Homogenization prior to enzyme reaction did not have much effect on tofu-residue solubilization. To improve solubility of tofu-residue, additional treatment such as alkali with 0.1% NaOH solution was found to be useful. The results showed that tofu-residue, which mainly consists of cell wall component of cellulose and hemicellulose, was not accessible to enzyme reaction and some prior treatment is required to enhance enzyme hydrolysis.

  • PDF