• Title/Summary/Keyword: Hydrolysis Reaction

Search Result 999, Processing Time 0.022 seconds

Furfural production from miscanthus and utilization of miscanthus residues (Miscanthus로부터 furfural 생산과 잔여물의 활용에 관한 연구)

  • Kim, Sung Bong;Yoo, Hah-Young;Lee, Sang Jun;Lee, Ja Hyun;Choi, Han Seok;Kim, Seung Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.114.2-114.2
    • /
    • 2011
  • Furfural is a versatile derivative. It can be utilized for a building-block of furfuryl alcohol production and a component of fuels or liquid alkanes. But in bio-process, furfural is a critical compound because it inhibits cell growth and metabolism. Furfural could be converted from xylose and usually produced from biomass in which hemicellulose is abundant. In this study, furfural production from miscanthus was performed and utilization of miscanthus residue was consequently conducted. At first, hydrolysis for investigation of miscanthus composition and furfural production was performed using sulfuric acid. Previously, we optimized dilute acid pretreatment condition for miscanthus pretreatment and the condition was found to be about 15 min of reaction time, 1.5% of acid concentration and about $140^{\circ}C$ of temperature and 60% (about 7 g/L) of xylose was solubilized from miscanthus. Using the xylose, furfural production was conducted as second step. Approximately $160{\sim}200^{\circ}C$ of temperature was accompanied with the hydrolysis for pyrolysis of biomass. When the investigated condition; $180^{\circ}C$ of temperature, 20 min of reaction time and 2% of acid concentration was operated for furfural production, furfural productivity was reached to be 77% of theoretical maximum. After reaction, residue of miscanthus was utilized as feedstock of ethanol fermentation. Residue was well washed using water and saccharified using hydrolysis enzymes. Hydrolysate (glucose) from saccharification was utilized for the carbon source of Saccharomyces cervisiae K35.

  • PDF

Synthesis and Characterization of New Polyaza Macrocyclic Nickel(Ⅱ) and Copper(Ⅱ) Complexes Two Nitrile or Imidate Ester Pendant Arms: Metal-Mediated Hydrolysis and Alcoholysis of the Nitrile Groups

  • Kang, Shin-Geol;Song, Jeong-Hoon;Jeong, Jong-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.824-829
    • /
    • 2002
  • New di-N-cyanomethylated tetraaza macrocycle 2.13-bis(cyanomethyl)-5.16-dimethyl-2,6,13,17-tetraazatricyclo[$16.4.0.0^7.12$]docosane $(L^2)$ has been prepared by the reaction of 3, 14-dimethyl-2,6,13,17-tetraazatricyclo $(L^1)$ with bromoacetonitrile. The square-planar complexes $[ML^2](ClO_4)_2(M=Ni(II)$ or Cu(II) can be prepared by the reaction of $L^2$ with the corresponding metal ion in acetonitrile. The cyanomethyl groups of $[ML^2](ClO_4)_2readily$ react with water to $yield[ML^3](ClO_4)_2$ containing pendant amide groups. The trans-octahedral complexes $[ML^4](ClO_4)_2$, in which two imidate ester groups are coordinated to the metal ion, can be also prepared by the reaction of $[ML^2](ClO_4)_2with$ methanol under mild conditions. The hydrolysis and alcoholysis reactions of $[ML^2](ClO_4)_2are$ promoted by the central metal ion, in spite of the fact that the cyanomethyl group is not involved in intramolecular coordination. The reactions are also promoted by a base such as triethylamine but are retarded by an $acid(HClO_4).Interestingly$, the imidate ester groups of $[ML^4]^2$ are unusually resistant to hydrolysis even in 0.1 M $HCIO_4$ or 0.1 M NaOH aqueous solution. Crystal structure of $[NiL^4](ClO_4)_2shows$ that the Ni-N (pendant imidate ester group) bond is rlatively strong; the Ni-N bond distance is shorter then the Ni-N(tertiary) distance and is similar to the Ni-N (secondary) distance.

Studies on the Destructible Surfactants(2);Surface-Active Properties of Cleavable Surfactant with 1, 3-Dioxolane Ring (분해성 계면활성제에 관한 연구(제2보);1, 3-Dioxlane고리를 갖는 분해성계면활성제의 합성)

  • Kim, J.H.;Ha, J.H.;Jeong, N.H.;Nam, K.D.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.101-107
    • /
    • 1995
  • As the surfactants that were used in micellar reaction, emulsion polymerization and phase-transfer reaction etc. have the problems, the cleavable surfactant was converted to inactive compound after such as the reaction in the condition. Because 1, 3-dioxolane ring by ketal or acetal reactioc is lack of stability in acid condition, it is easily made to acid-hydrolysis. And cmc value of the surfactant is assumed $1.0{\times}10^{-5}mol/L$ and surface tension in cmc is 31 dyne/cm. Compared with other surfactant, this surfactant foam property is not better. But emulsion property was relatively good. According as acid-hydrolysis property was observed the interface tension change between aqueous solution and benzene by the variation of pH and time, this surfactant was made to hydrolysis within about 300minutes in pH 1${\sims}$4. Therefore this surfactant is expected to be a good emulsifier that has the bad foam property and the acid-hydrolysis property in acid condition.

Real Time Scale Measurement of Inorganic Phosphate Release by Fluorophore Labeled Phosphate Binding Protein (형광단이 붙어 있는 인산결합 단백질에 의한 인산 배출의 실시간 측정)

  • Jeong Yong-Joo
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.935-940
    • /
    • 2005
  • Fluorescence change of coumarin labeled phosphate binding protein (PBP-MDCC) was monitored to measure the amount of released inorganic phosphate ($P_{i}$) during nucleoside triphosphate (NTP) hydrolysis reaction. After purification of PBP-MDCC, fluorescence emission spectra showed that fluorescence responded linearly to $P_{i}$ up to about 0.7 molar ratio of $P_{i}$ to protein. The correlation of fluorescence signal and $P_{i}$ standard was measured to obtain [$P_{i}$] - fluorescence intensity standard curve on the stopped-flow instrument. When T7 bacteriophage helicase, double-stranded DNA unwinding enzyme using dTTP hydrolysis as an energy source, reacted with dTTP, the change of fluorescence was able to be converted to the amount of released $P_{i}$ by the $P_{i}$ standard curve. $P_{i}$ release results showed that single-stranded Ml3 DNA stimulated dTTP hydrolysis reaction several folds by T7 helicase. Instead of end point assay in NTP hydrolysis reaction, real time $P_{i}$-release assay by PBP-MDCC was proven to be very easy and convenient to measure released $P_{i}$.

Cellulose Hydrolysis by Digestive Enzymes of Reticulitermes speratus, a Native Termite from Korea

  • Lee, Young-Min;Kim, Hyun-Jung;Cho, Moon-Jung;Shin, Keum;Kim, Young-Kyoon;Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.140-148
    • /
    • 2010
  • This study was to investigate the enzymatic hydrolysis of cellulose using the cellulase from whole body of the native termite collected in Milyang-si, Kyungsangnamdo, Korea. In the results, optimal temperature and pH for the enzyme of native termites were $45^{\circ}C$ and pH 5.5 for both endo-${\beta}$-1, 4-glucanase and ${\beta}$-glucosidase. Enzyme activity of the termite enzyme was shown $8.8{\times}10^{-2}\;FPU/m{\ell}$. And the highest glucose hydrolysis rate of cellulose by the digestive enzyme from test termites was 24.5% based on the glucan, comparing 59.7% by commercial enzyme (only celluclast 1.5 L) at 1% (w/v) substrate and 36 hours in hydrolysis time. This hydrolysis rate by the digestive enzyme from test termites was comparatively high value in 41% level of the commercial enzyme. When cellulose was hydrolyzed by the digestive enzyme of the native termite, glucose hydrolysis was almost completed in 12 hours which was the considerably reduced time for cellulose hydrolysis. It was suggested that the quiet short reaction time for cellulose hydrolysis by the enzyme from native termite could be a very high advantage for development of hydrolysis cellulase for lignocellulosic biomass.

Assessment of Methane Potential in Hydro-thermal Carbonization reaction of Organic Sludge Using Parallel First Order Kinetics (병열 1차 반응속도식을 이용한 유기성 슬러지 수열탄화 반응온도별 메탄생산퍼텐셜 평가)

  • Oh, Seung-Yong;Yoon, Young-Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.2
    • /
    • pp.128-136
    • /
    • 2016
  • BACKGROUND: Hydrothermal carbonization reaction is the thermo-chemical energy conversion technology for producing the solid fuel of high carbon density from organic wastes. The hydrothermal carbonization reaction is accompanied by the thermal hydrolysis reaction which converse particulate organic matters to soluble forms (hydro-thermal hydrolysate). Recently, hydrothermal carbonization is adopted as a pre-treatment technology to improve anaerobic digestion efficiency. This research was carried out to assess the effects of hydro-thermal reaction temperature on the methane potential and anaerobic biodegradability in the thermal hydrolysate of organic sludge generating from the wastewater treatment plant of poultry slaughterhouse .METHODS AND RESULTS: Wastewater treatment sludge cake of poultry slaughterhouse was treated in the different hydro-thermal reaction temperature of 170, 180, 190, 200, and 220℃. Theoretical and experimental methane potential for each hydro-thermal hydrolysate were measured. Then, the organic substance fractions of hydro-thermal hydrolysate were characterized by the optimization of the parallel first order kinetics model. The increase of hydro-thermal reaction temperature from 170℃ to 220℃ caused the enhancement of hydrolysis efficiency. And the methane potential showed the maximum value of 0.381 Nm3 kg-1-VSadded in the hydro-thermal reaction temperature of 190℃. Biodegradable volatile solid(VSB) content have accounted for 66.41% in 170℃, 72.70% in 180℃, 79.78% in 190℃, 67.05% in 200℃, and 70.31% in 220℃, respectively. The persistent VS content increased with hydro-thermal reaction temperature, which occupied 0.18% for 170℃, 2.96% for 180℃, 6.32% for 190℃, 17.52% for 200℃, and 20.55% for 220℃.CONCLUSION: Biodegradable volatile solid showed the highest amount in the hydro-thermal reaction temperature of 190℃, and then, the optimum hydro-thermal reaction temperature for organic sludge was assessed as 190℃ in the aspect of the methane production. The rise of hydro-thermal reaction temperature caused increase of persistent organic matter content.

Durability of Co-P-B/Cu Catalyst for NaBH4 Hydrolysis Reaction (NaBH4 가수분해용 Co-P-B/Cu 촉매의 내구성)

  • Hwang, Byungchan;Jo, Ara;Sin, Sukjae;Choi, Daeki;Nam, Sukwoo;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.627-631
    • /
    • 2012
  • Sodium borohydride, $NaBH_4$, shows a number of advantages as hydrogen source for portable proton exchange membrane fuel cells (PEMFCs). The durability of Co-P-B/Cu catalyst for sodium borohydride hydrolysis reaction was studied. The effect of reaction temperature, $NaBH_4$ concentration, NaOH concentration and calcination temperature of catalyst on the durability of Co-P-B/Cu catalyst were measured. The gel formed during hydrolysis reaction affected the durability of catalyst (loss of catalyst). Formation of gel increased the loss of the catalyst. When $NaBH_4$ concentration was high and reaction temperature was higher than $60^{\circ}C$, loss of catalyst was low because gel was not formed. But under the temperature of $40^{\circ}C$, loss of catalyst increased due to gel formation When $NaBH_4$ concentration was 40 weight % and the reaction temperature was $40^{\circ}C$, the loss of catalyst increased as the NaOH concentration increased. As the calcination temperature of catalyst decreased, the loss of catalyst decreased and the activity of catalyst decreased. Calcination of the catalyst at high temperature enhanced the durability of catalyst but diminished the activity of catalyst.

Cinnamic Acid Derivatives I, The Kinetics and Mechanism of the Hydrolysis and Synthesis of Cinnamanilide Derivatives (신남산 유도체 I, Cinnamanilide 유도체의 가수분해 메카니즘과 반응속도론적 연구)

  • Lee, Ki-Chang;Hwang, Yong-Hyun;Lee, Kwang-Il;Jung, Taek-Suh;Park, Kwang-Ha
    • Journal of the Korean Applied Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.59-65
    • /
    • 1989
  • The rate constants of the hydrolysis of cinnamanilide derivatives were determined UV spectrometry in $H_2SO_4\;(5{\sim}20N)$, NaOH($5{\sim}11N)\;at\;50{\sim}110^{\circ}C$ and rate equation could be applied over a strong acid and strong base were obtained. Final product of the hydrolysis was a cinnamic acid. The ${\rho}$ values obtained from the slope of linear plots of log $k_{abs}$ vs. Hammet $t{\sigma}$ constants were slightly negatives, Substituents on cinnamanilide showed a relatively small effect, with hydrolysis facilitated be electron donating group. Activation energy(Ea)was also calculated for the hydrolysis of the cinnamanilide. From this reaction rate equation, substituent effect and experimental of rate constants, that the hydrolysis of cinnamanillde was Initiated by the netural molecule of $H_2O$ which do not dissociate at strong acid, and proceeded by hydroxide ion at strong base.