DOI QR코드

DOI QR Code

Cellulose Hydrolysis by Digestive Enzymes of Reticulitermes speratus, a Native Termite from Korea

  • Lee, Young-Min (Department of Forest Products, College of Forest Science, Kookmin University) ;
  • Kim, Hyun-Jung (Department of Forest Products, College of Forest Science, Kookmin University) ;
  • Cho, Moon-Jung (Department of Forest Products, College of Forest Science, Kookmin University) ;
  • Shin, Keum (Department of Forest Products, College of Forest Science, Kookmin University) ;
  • Kim, Young-Kyoon (Department of Forest Products, College of Forest Science, Kookmin University) ;
  • Kim, Yeong-Suk (Department of Forest Products, College of Forest Science, Kookmin University)
  • Received : 2010.03.03
  • Accepted : 2010.03.08
  • Published : 2010.03.25

Abstract

This study was to investigate the enzymatic hydrolysis of cellulose using the cellulase from whole body of the native termite collected in Milyang-si, Kyungsangnamdo, Korea. In the results, optimal temperature and pH for the enzyme of native termites were $45^{\circ}C$ and pH 5.5 for both endo-${\beta}$-1, 4-glucanase and ${\beta}$-glucosidase. Enzyme activity of the termite enzyme was shown $8.8{\times}10^{-2}\;FPU/m{\ell}$. And the highest glucose hydrolysis rate of cellulose by the digestive enzyme from test termites was 24.5% based on the glucan, comparing 59.7% by commercial enzyme (only celluclast 1.5 L) at 1% (w/v) substrate and 36 hours in hydrolysis time. This hydrolysis rate by the digestive enzyme from test termites was comparatively high value in 41% level of the commercial enzyme. When cellulose was hydrolyzed by the digestive enzyme of the native termite, glucose hydrolysis was almost completed in 12 hours which was the considerably reduced time for cellulose hydrolysis. It was suggested that the quiet short reaction time for cellulose hydrolysis by the enzyme from native termite could be a very high advantage for development of hydrolysis cellulase for lignocellulosic biomass.

Keywords

References

  1. Park, H.-C., K. S. Lee, J. Y. Kim, and T. K. No. 2002. Deterioration survey of cultural wooden structure in Korea, J. Bior. Dev. Inst, 6: 1-6.
  2. Donovan S. E., P. Eggleton, and D. E. Bignell. 2001. Gut content analysis and a new feeding group classification of termites. Ecological Entomology. 26: 356 - 366. https://doi.org/10.1046/j.1365-2311.2001.00342.x
  3. Hogan M. E., M. W. Schulz, M. Slaytor, R. T. Czolij, and R. W. O'Brien. 1998. Components of termite and the protozoal cellulases from the lower termite Coptotermes lacteus Froggatt, Insect Biochem. 18: 45-51.
  4. Lee, D. H .. and D. P. Ryu. 2003. Ecology of Termite and control, Korea Forest Research lnstitute, 11.
  5. Chu, S. 2005. Growing energy: Berkeley Lab's Steve Chu on what termite guts have to do with global warming. By Bonnie Azab Powell, News Center 30 September.
  6. Bullis, K. 2008. Creating ethanol from wood more efficiently-Bacteria in termite guts could make ethannol from noncom sources cheaper, Technology Review, http://www.technologyreview.com.
  7. Odelson, D. A. and J. A. Breznak. 1985. Cellulase and other poly-hydrolyzing activities of Trichomitopsis termopsidis, a symbiotic protozoan from termites, Appl. Environ. Microbic. Mar. 622 -626.
  8. Park, H. C. and T. W. Bae. 1997. Morphological description of Reticulitennes speratus kyushuenesis Morimoto (Isoptera: Rhinotermitidae) in Southern part of Korea. Korean J. Soil Zoology 2(1): 59-64.
  9. Park, H. C. and T. W. Bae. 1998. Celluloytic ability of Bacillus amyloloquefaciens in the gut of Reticulitermes speratus kyushuenesis Morimoto. Korean J. Soil Zoology 3(2): 51-57.
  10. Singer, E. 2007. Termite guts could boost ethanol efficiency-A rnetagenomic study could suggest ways to make cellulosic ethanol, Technology Review, http://www.technologyreview.
  11. Krusa, M., G. Henriksson, G. Johansson, T. Reitberger, and H. Lennholm. 2005. Oxidative cellulose degradation by cellobiose dehydrogenase from Phanerochaete chrysosporium : A model compound study. Holzforchung, 59(3): 263 -268. https://doi.org/10.1515/HF.2005.043
  12. Liang, T. W .. Y. J. Chen, Y. H. Yen, and S. L. Wang. 2007. The antitumor activity of the hydroIysates of chitinous materials hydrolyzed by crude enzyme from Bacillus amyloliquefaciens V656, Process Biochemistry, 42: 527 - 534. https://doi.org/10.1016/j.procbio.2006.10.005
  13. Moon, H. S., H. S. Kim, K. K. os, S. W. Kim, and S. I. Hong. 2001. Kinetic Modeling of Simu Itaneous Sacchari fication and F ennentation for Ethanol Production Using Steam-Exploded Wood with Glucose-and Cellobiose- Fermenting Yeast, Breuanomyces custtersii. J. Microbiol. Biotechnol. 11 (4): 598-606.
  14. Yoon, J. J. and Y. K. Kim. 2005. Degradation of Crystalline Cellulase by the Brown-rot Basidiomycete Fomitopsis palustris. J. of Microbiol. 43(6): 487 -492.
  15. Yoon, J. J., C. J. Cha, Y. S. Kim, D. W. Son, and Y. K. Kim. 2007. The Brown-Rot Basidiomycete Fomitopsis palustris has the Endo-Glucanases Capable of Degrading Microcrystalline Cellulose. J. Microbiol. Biotechnol. 17(5): 800-805.
  16. Oh, K. K., S. W. Kim, Y. Jeong, and S. I. Hong. 2000. Bioconversion of Cellulose into Ethanol by Nonisothermal Simultaneous Saccharification and Fermentation, Appl. Biochem. and Biotechnol. 89: 15-30. https://doi.org/10.1385/ABAB:89:1:15
  17. Azuma, J. I. and T. Koshijima. 1984. Enzymatic Saccharification of Wood Plants. Wood Research. 70: 17-24.
  18. Kim, J. S., K. K. Oh, S. W. Kim. Y. S. Jeong, and S. I. Hong. 1999. Ethanol Procuciion from Lignocellulosic Biomass Sirnultanceous Saccharification and Fermentation Employing the Reuse of Yeast and Enzyme. J. Microbial. Biotechnol. 9(3): 297 -302.
  19. Lee, J. S., J. P. Lee, J. K. Cho, Y. W. Lee, J. J. Hong, and S. C. Park. 1994. Pretreatment of Enzymatic hydrolysis of lignocellulosic biomass. J. Kor. lnst. of Chem. Eng. 32(1): 36-41.
  20. Lee Y. M., H. J. Kim, M. J. Cho, K. Shin, Y. K. Kim, and Y. S. Kim. 2010. Cellulase Production in the digestive organs of Reticulitermes speratus, a native termite from Milyang, Korea, J. of the Korean Wood Science and Technology (submitted).
  21. Nelson, N. 1944. A photorneric adaption of the Somogyi method for the dererminaton of glucose, J. BioI. Chem. 153: 375 - 380.
  22. Adney, B. and Baker, J. 2000. Measurement of cellulase activities. National Renewable Energy Laboratory (NREL), http://www.nrel.gov.
  23. Azurna, J. I. K. Nishimoto and T. Koshijima. 1984. Studies on digestive system of termites. II. Properties of Carbohydrolases of termite Coptotermes formosan us Shiraki, Wood Research. 70: 17-24.
  24. Yokoe Y. 1964. Scient. Pap. Coll. Gen. Educ. Univ, of Tokyo, 14: 115- 120.
  25. Yamaoka, I. and Y. Nagatani. 1975. Cellulose Dige lion ystern in the Termite. Reticulitermes speratus (Kolbe). I. Producing ites and Phy- siological Significancerwo kinds of cellulase in the worker. Zoo. Mag., 84: 23-29.
  26. Jeong, C. S., O. J. Seol, and Y. C. Ha. 1994. Charateristics of $\beta$ -1,4-D-Glucan Cellobiobydrolase from Trichoderma koningii ., Kor. Jour. Microbiol. 32(5): 400 -408.
  27. Sun, Y. 2002. Enzymatic hydrolysis of rye straw and Bermuda grass for ethanol production. North Carolina State University.
  28. Ballesteros, F. A., J. M. Oliva, M. J. Negro, P. Manzanares, and I. Ballesteros. 2004. Ethanol from lignocellulosic materials by a simultaneous sacchari fication and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochemistry. 39: 1843 - 1848. https://doi.org/10.1016/j.procbio.2003.09.011