DOI QR코드

DOI QR Code

Investigation of the Effective Catalyst for Organosolv Pretreatment of Liriodendron tulipifera

  • Koo, Bon-Wook (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Gwak, Ki-Seob (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Ho-Yong (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Choi, Joon-Weon (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Yeo, Hwan-Myeong (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Choi, In-Gyu (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University)
  • Received : 2010.02.02
  • Accepted : 2010.03.10
  • Published : 2010.03.25

Abstract

Organosolv pretreatments which utilized sulfuric acid, sodium hydroxide and ammonia as catalysts were conducted to screen the effective catalyst for organosolv pretreatment of Liriodendron tulipifera. The enzymatic hydrolysis was achieved effectively with sulfuric acid (74.2%) and sodium hydroxide (63.7%). They were thus considered as effective catalysts for organosolv pretreatment of L. tulipifera. The organosolv pretreatments with sulfuric acid and sodium hydroxide showed a different behavior on the reaction mechanism. The pretreatment with sulfuric acid increased the biomass roughness and pore numbers. On the other hand, the pretreatment with sodium hydroxide enhanced the surface area due to the size reduction and minor defiberization which were caused by hemicellulose degradation at an initial stage and more defiberization by lignin degradation at a later stage. The organosolv pretreatment with sodium hydroxide was performed at several different conditions to evaluate effectiveness of sodium hydroxide as a catalyst for organosolv pretreatment. According to the results of enzymatic digestibility, the changes of chemical composition and the morphological analysis of pretreated biomass, it was suggested that the pretreatment time impacted primarily on enzymatic hydrolysis. Increase in surface area during the pretreatment was a major cause for improvement in enzymatic digestibility when sodium hydroxide was used as a catalyst.

Keywords

References

  1. Ingram, L. O. and J. B. Doran. 1995. FEMS Microbiology Reviews 16: 235 - 241. https://doi.org/10.1111/j.1574-6976.1995.tb00170.x
  2. Gray, K. A., L. Zhao, and M. mptage. 2006. Current Opinion in hernical Biology 10: 141-146. https://doi.org/10.1016/j.cbpa.2006.02.035
  3. Fulton L., T. Howes, and J. Hardy. 2004. Biofuels for transport: an international perspective. OECD. lnternational Energy Agency.
  4. Soderstrom, J., L Pilcher, M. Galbe, and G. Zacchi. 2003. Biomass and Biocncrgy 24: 475 - 486. https://doi.org/10.1016/S0961-9534(02)00148-4
  5. Sun, Y. and J. Cheng. 2002. Bioresource Technology 83: 1 - 11. https://doi.org/10.1016/S0960-8524(01)00212-7
  6. Saddler, J. N., L. P. Ramos, and C. Breuil. 1993. CAB International, London, UK 73 - 92.
  7. Lynd, L R., P. J. Weimer, W. H. van Zyl, and L S. Pretorius. 2002. Microbiology and Molecular Biology Reviews 66: 506 - 577. https://doi.org/10.1128/MMBR.66.3.506-577.2002
  8. Mosier, N., C. Wyman. B. Dale. R. Elander, Y. Y. Lee, M. Holtzapple and M. Ladiseh. 2005. Bioresource Technology 96: 673 - 686. https://doi.org/10.1016/j.biortech.2004.06.025
  9. Wyman, C. E. B. E. Dale, R. T. Elander. M. Holt.zapple, M. R. Ladiseh, and Y. Y. Lee. 2005. Bioresource Technology 96: 1959 - 1966. https://doi.org/10.1016/j.biortech.2005.01.010
  10. McMillan, J. D. 1994. The ACS Symposium Series 566: 292 - 324. https://doi.org/10.1021/bk-1994-0566.ch015
  11. Pye, E. K. and J. H. Lora. 1991. TAPPI Journal 74.
  12. Stockburger, P. 1993. TappI Journal (USA) 76: 71-74.
  13. Chum, H. L., D. K. Johnson, and S. K. Black. 1990. Industrial & Engineering Chemistry Research 29: 156 - 162. https://doi.org/10.1021/ie00098a003
  14. Diaz, M. J., A. Alfaro. M. M. Garcia. M. E. Eugenio. J. Ariza. and F. Lopez. 2004. lndustrial & Enginecring Chemistry Research 43: 1875-1881. https://doi.org/10.1021/ie030611a
  15. Jimenez, L.. I. Perez, J. C. Garcia, A. Rodriguez, and J. L. Ferrer. 2002. Process Biochemistry 37: 665 - 672. https://doi.org/10.1016/S0032-9592(01)00255-2
  16. Chum, H. L., D. K. Johnson, S. Black, J. Baker, K. Grohmann, and K. V. Sarkanen, 1998. Biotechnology and Bioengineering 31: 643 -649.
  17. Liu, Y., S. Carriero, K. Pye, and D. S. Argyropoulos, 2000. A comparison of the structural changes occurring in lignin during Alcell and kraft pulping of hardwoods and softwoods, American Chemical Society, USA, Washington DC.
  18. Pan, X., C. Arato, N. Gilkes, D. Gregg, W. Mabee, K. Pye, Z. Xiao, X. Zhang, and J. Saddler. 2005. Biotechnology and Bioengineering 90: 473 -481. https://doi.org/10.1002/bit.20453
  19. Pan. X., N. Gilkes. J. Kadla, K. Pye, S. Saka, D. Gregg, K. Ehara, D. Xie, D. Lam, and J. Saddler. 2006. Biotechnology and Bioengineering 94: 851-861. https://doi.org/10.1002/bit.20905
  20. Holtzapple. M. T. and A. E. Humphrey. 1984. Biotechnology and Bioengineering 26: 670- 676. https://doi.org/10.1002/bit.260260706
  21. Fan, L. T., M. M. Gharpuray, and Y. H. Lee. 1987. Cellulose hydrolysis. Biotechnology monographs, Springer-Verlag, USA, New York.
  22. Teramoro, Y., N. Tanaka. S. H. Lee. and T. Endo. 2008. Biotechnology and Bioengineering 99: 75 -85. https://doi.org/10.1002/bit.21522
  23. NREL. 2005. Biomass Analysis Technology Team Laboratory Analytical Procedure, US Department of Energy, National Renewable Energy Laboratory, Golden, CO.
  24. Segal. L., J. J. Creely. A. E. Martin Jr, and C. M. Conrad. 1959. Textile Research Journal 29: 786. https://doi.org/10.1177/004051755902901003
  25. Donohoe. B. S ., S. R. Decker, M. P. Tucker, M. E. Himmel. and T. B. Vinzant. 2008. Biotechnol Bioeng 101: 913-925. https://doi.org/10.1002/bit.21959
  26. Wyman. C. E., B. E. Dale, R. T. Elandcr, M. Holtzapple. M. R. Ladisch, Y. Y. Lee, C. Mitchinson, and J. N. Saddler. 2009. Biotechnology Progress 25: 333 - 339. https://doi.org/10.1002/btpr.142
  27. Kitts, W. D., J. G. Huffman, and C. R. Krishnamurti, 1971. Can. J. Anim, Sci. 51: 457. https://doi.org/10.4141/cjas71-061
  28. Alizadeh. H., F. Teymouri. T. l. Gilbert, and B. E. Dale. 2005. Applied Biochemistry and Biotechnology 124: 1133-1141. https://doi.org/10.1385/ABAB:124:1-3:1133
  29. Holtzapple M. T., J. H. Jun G. Ashok, S. L. Patibandla, and B. E. Dale. 1991. Applied Biochemistry and Biotechnology 28: 59 -74. https://doi.org/10.1007/BF02922589
  30. Iyer, P. V., Z. W. Wu, S. B. Kim and Y. Y. Lee. 1996. Applied Biochemistry and Biotechnology 57: 121 - 132. https://doi.org/10.1007/BF02941693
  31. Kim, T. H., J. S. Kim, C. Sunwoo, and Y. Y. Lee. 2003. Bioresource Technology 90: 39-47. https://doi.org/10.1016/S0960-8524(03)00097-X
  32. Kim, T. H, and Y. Y. Lee. 2005. Bioresource Technology 96: 2007 - 2013. https://doi.org/10.1016/j.biortech.2005.01.015
  33. Teymouri, F., L. Laureano-Perez, H. Alizadeh, and B. E. Dale. 2005. Bioresource Technology 96: 2014-2018. https://doi.org/10.1016/j.biortech.2005.01.016
  34. Cheng, Y. S., J. VanderGhcynst Y. Zheng, R. Zhang, and B. Jenkins. 2009. in Eds, pp.
  35. Grabber. J. H., R. D. Hatfield, F. Lu, and J. Ralph. 2008. Biomacromolecules 9: 2510- 2516. https://doi.org/10.1021/bm800528f
  36. Liu, C. and C. E. Wyman. 2003. Ind. Eng. Chem. Res. 42: 5409 - 5416. https://doi.org/10.1021/ie030458k
  37. Caulfield, D. F. and W. E. Moore. 1973. Effect of varying crystallinity of cellulose on enzymic hydrolysis. Forest Products Laboratory, US Dept. of Agriculture.
  38. Fan, L. T., M. M. Gharpuray, and Y. Lee. 1981. in Biotechnology & Bioengineering Symposium Eds, pp. 29 -45.
  39. Laureano-Perez, L., F. Teymouri, H. Alizadeh, and B. E. Dale. 2005. Applied Biochemistry and Bio- technology 124: 1081 - 1099. https://doi.org/10.1385/ABAB:124:1-3:1081
  40. Chang, V. S. and M. T. Holtzapple. 2000. in 21st Symposium on Biotechnology for Fuels and Chemicals, Eds, pp. 84-86.
  41. Kasahara, K., H. Sasaki, N. Donkai, T. Yoshihara, and T. Takagishi, 2001. Cellulose 8: 23-28. https://doi.org/10.1023/A:1016637307450
  42. Tanahashi, M., T. Higuchi, S. Takada, T. Aoki, T. Goto, and S. Hanai. 1983. Wood Research 69: 36 - 51.
  43. Himmel, M. E., S. Y. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos, J. W. Brady, and T. D. Foust. 2007. Science 315: 804. https://doi.org/10.1126/science.1137016

Cited by

  1. Evaluation of Pitch Pine for Bioethanol Production by Organosolv Pretreatment vol.47, pp.4, 2015, https://doi.org/10.7584/ktappi.2015.47.4.021