• Title/Summary/Keyword: Hydrological safety

Search Result 74, Processing Time 0.035 seconds

Development of Hydrological Safety Evaluation Model for Agricultural Reservoir (농업용저수지의 수문학적 안전성 평가를 위한 계수화 모델 산정)

  • Park, Jong Seok;Rhee, Kyoung Hoon;Lee, Jae Ju;Shim, Choon Seok;Jin, Wan Gyu;Hu, Shin Young
    • Journal of Wetlands Research
    • /
    • v.17 no.2
    • /
    • pp.130-138
    • /
    • 2015
  • According to the "Safety Evaluation Detailed Instructions (Dam)", a precise safety inspection is carried out for dams that exceed a certain scale. However, as the Hydrological Safety Evaluation from various evaluation standards is designed to evaluate the safety of existing dams considering PMF(Probable Maximum Flood), the evaluation is much less applicable for most agricultural reservoirs. Therefore, the Hydrological Safety Guidelines for agricultural reservoirs are expected to be re-evaluated considering the diverse risk factors with the coefficient model and AHP(Analytic Hierarchy Process) in this study. The coefficient model has been developed by selecting the hydrological safety superordinate subordinate evaluation factors to reflect diverse risk factors of agricultural reservoirs. This study indicated that in the short term, improving the safety check condition evaluation grade will be useful to improve the hydrological safety of the agricultural reservoir because it can be performed immediately.

Development and Application of Hydrological Safety Evaluation Guidelines for Agricultural Reservoir with AHP (AHP를 이용한 농업용저수지 수문학적 안전성평가 방법 개발 및 적용)

  • Lee, Jae Ju;Park, Jong Seok;Rhee, Kyoung Hoon
    • Journal of Wetlands Research
    • /
    • v.16 no.2
    • /
    • pp.235-243
    • /
    • 2014
  • According to the "Safety Evaluation Detailed Instructions (Dam)", precise safety inspection is carried out for dams that exceed a certain scale. However, as the Hydrological Safety Evaluation from various evaluation standards is designed to evaluate the safety of existing dams considering PMF, the evaluation is much less applicable for most agricultural reservoirs. Therefore, the Hydrological Safety Guidelines for agricultural reservoirs are expected to be re-evaluated considering the diverse risk factors with the coefficient model and AHP in this study. The coefficient model has been developed by selecting the hydrological safety superordinate subordinate evaluation factors to reflect diverse risk factors of agricultural reservoirs. After calculating the sum of indicators score for each evaluation factors, validation procedures were performed for the questionnaire which a panel answered. The practical coefficient has eventually been estimated for the hydrological safety evaluation considering the diverse risk factors. The conclusions acquired based on the study done are that both most agricultural reservoirs were classified as flood defense capability is insufficient and agricultural reservoirs which meet embankment-freeboard standards considering PMF was overestimated.

Climate Change Impacts and Adaptation on Hydrological Safety Perspectives of Existing Dams (기후변화에 따른 댐의 수문학적 안전성 평가 및 적응방안 고찰)

  • Park, Jiyeon;Jung, Il Won;Kwon, Ji Hye;Kim, Wonsul
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.149-156
    • /
    • 2019
  • Assessing the hydrological safety of existing dams against climate change and providing appropriate adaptation measures are important in terms of sustainable water supply and management. Korean major dams ensure their safety through periodic inspections and maintenance according to 'Special Act on the safety control and maintenance of establishments'. Especially when performing a full safety examination, principal engineer must assess the hydrological safety and prepare for potential risks. This study employed future probable maximum precipitation (PMP) estimated using outputs of regional climate models based on RCP4.5 and RCP8.5 greenhouse-gas emission scenarios to assess climate change impact on existing dam's future hydrological safety. The analysis period was selected from 2011 to 2040, from 2041 to 2070, and from 2071 to 2100. Evaluating the potential risk based on the future probable maximum flood (PMF) for four major dams (A, B, C, I) showed that climate change could induce increasing the overflow risk on three dams (A, B, I), although there are small differences depending on the RCP scenarios and the analysis periods. Our results suggested that dam managers should consider both non-structural measures and structural measures to adapt to the expected climate change.

An Investigation of the Hydrological Safety for Downstream Areas Consideration of Dam Discharge (댐 방류량을 고려한 하류지역의 수리안정성 검토)

  • Jun, Kye-Won
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.166-171
    • /
    • 2012
  • This study aims to analyze the hydrological characteristics of downstream areas by the dam discharge of Soyanggang dam by using HEC-RAS Model. As a result of analyzing the data of dam discharge divided into hydropeaking discharge and total discharge, it as found that the maximum hydro-peaking discharge and the maximum total discharge have been 254.4 CMS and 1567.7 CMS respectively for the past 11 years. When the hydro-peaking discharge was applied to HEC-RAS Model, there occurred some sections where the water level rapidly changed, but the velocity of moving water was quite stable in the range between 0.23 m/sec and 1.16m/sec. Besides, when the total discharge was applied to this model, the submersible bridge along the dam downstream was flooded, and in some sections, the water level increased over the flood plain. Accordingly, this study judged that it is required to necessarily consider all the influence made by an increase of Soyanggang Dam's discharge when waterfronts are installed or used at dam downstream areas.

Development of Evaluation Items and Indicators for Hydrological Safety on Agricultural Reservoir (농업용저수지 수문학적 안전성 평가 항목 및 지표 개발)

  • Lee, Jae Ju;Rhee, Kyoung Hoon;Park, Jong Seok;Han, Chang Wha;Jin, Wan Gyu
    • Journal of Wetlands Research
    • /
    • v.16 no.4
    • /
    • pp.403-411
    • /
    • 2014
  • This study Development of Evaluation Items and Indicators for Hydrological Safety on Agricultural Reservoir improvement and grasped the relative importance through stratification of the evaluation points through AHP technique exercised by group of experts. Below conclusion was acquired based on the study done. Firstly, the hierarchy of the evaluation items was divided into two layers: there were six upper evaluation items and eleven lower evaluation items. Secondly, using the analytic hierarchy process, the importance values of the six upper evaluation items were determined via the paired comparison questionnaire survey and consistency check, which were in the order of maintenance condition (condition evaluation grade), freeboard of levee body (non-overtopping), discharge capacity of spillway, potential flood damage, flood calculation factor and freeboard of downstream bank. The maintenance condition(condition evaluation grade) was significantly influenced the results of the hydrological safety on agricultural reservoir evaluation results. Finally, the study indicated that in the short term, improving the safety check condition evaluation grade will be useful to improve the hydrological safety of the agricultural reservoir because it can be performed immediately.

THE CHEONGGYE-CHEON ESTORATION PROJECT AND HYDROLOGICAL CYCLE ANALYSIS

  • Kim, Hyeon-Jun;Yoon, Soo-Kil;Noh, Seong-Jin;Jang, Cheol-Hee
    • Water Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.179-187
    • /
    • 2005
  • This paper introduces the Cheonggye-cheon restoration project. The restoration project aims to revive the 600-year-old city of Seoul by recovering the historical heritage, guaranteeing safety from the deteriorated covering structures, creating the environment-friendly space, and revitalizing the neglected city centers. In order to understand the current hydrological cycle of the Chenggye-cheon watershed, the annual water balance of the region was calculated using the observed data including precipitation, runoff, water supply and sewage, and the changes in the groundwater level. The $2001{\sim}2002$ data were used to calibrate the WEP, and the $2003{\sim}2004$ data were used to verify the WEP. The calibration and validation results for the flood hydrograph how a reasonable value (at Majanggyo station, the R2 for the calibration period was 0.9, and that for the validation period was 0.7). According to the annual water balance of the Cheonggye-cheon watershed for 2004, the amount of surface runoff, infiltration, and evapotranspiration was 1,097mm, 216mm and 382mm, respectively, for an annual precipitation of 1,499mm. The application results from WEP, a distributed hydrological model, provide more detailed information of the watershed, and the model will be useful for improving the hydrological cycle in urban watershed.

  • PDF

Conceptual Modeling Coupled Thermal-Hydrological-Chemical Processes in Bentonite Buffer for High-Level Nuclear Waste Repository (고준위 방사성폐기물 처분장에서 벤토나이트 완충제에 대한 열-수리-화학 작용 개념 모델링)

  • Choi, Byoung-Young;Ryu, Ji-Hun;Park, Jinyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • In this study, thermal-hydrological-chemical modeling for the alteration of a bentonite buffer is carried out using a simulation code TOUGHREACT. The modeling results show that the water saturation of bentonite steadily increases and finally the bentonite is fully saturated after 10 years. In addition, the temperature rapidly increases and stabilizes after 0.5 year, exhibiting a constant thermal gradient as a function of distance from the copper tube. The change of thermal-hydrological conditions mainly results in the alteration of anhydrite and calcite. Anhydrite and calcite are dissolved along with the inflow of groundwater. They then tend to precipitate in the vicinity of the copper tube due to its high temperature. This behavior induces a slight decrease in porosity and permeability of bentonite near the copper tube. Furthermore, this study finds that the diffusion coefficient can significantly affect the alteration of anhydrite and calcite, which causes changes in the hydrological properties of bentonite such as porosity and permeability. This study may facilitate the safety assessment of high-level radioactive waste repositories.

Comparison of Meteorological Drought and Hydrological Drought Index (기상학적 가뭄지수와 수문학적 가뭄지수의 비교)

  • Lee, Bo-Ram;Sung, Jang Hyun;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.1
    • /
    • pp.69-78
    • /
    • 2015
  • In this study, meteorological drought indices were examined to simulate hydrological drought. SPI (Standardized Precipitation Index) and SPEI (Standardized Precipitation Evapotranspiration Index) was applied to represent meteorological drought. Further, in order to evaluate the hydrological drought, monthly total inflow and SDI (Streamflow Drought Index) was computed. Finally, the correlation between meteorological and hydrological drought indices were analyzed. As a results, in monthly correlation comparison, the correlation between meteorological drought index and monthly total inflow was highest with 0.67 in duration of 270-day. In addition, a meteorological drought index were correlated 0.72 to 0.87 with SDI. In compared to the annual extremes, the relationship between meteorological drought index and minimum monthly inflow was hardly confirmed. But SDI and SPEI showed a slightly higher correlation. There are limitation that analyze extreme hydrological drought using meteorological drought index. For the evaluation of the hydrological drought, drought index which included inflow directly is required.

A Study on the Mass Balance Analysis of Non-Degradable Substances for Bioreactor Landfill

  • Chun, Seung-Kyu
    • Environmental Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.191-196
    • /
    • 2012
  • Analysis of hydrological safety as well as the determination of many substance concentrations are necessary when bioreactor systems are introduced to landfill operations. Therefore, hydrological and substance balance model was developed since it can be applied to various bioreactor landfill operation systems. For the final evaluation of the model's effectiveness, four different methods of injections (leachate alone, leachate and organic waste water, leachate and reverse osmosis concentrate, and all the above three combination) was applied to 1st landfill site of Sudokwon landfill. As a result, the water content of the hypothetical cases for four different systematic bioreactors is projected to be increased up to 35.5% in next 10 years, and this indicated that there will be no problems in meeting the hydrological safety. Also, the final $Cl^-$ concentration after 10-yr time period was projected to be between from minimum 126 to maximum 3,238 mg/L, which could be still a decrease from the original value of 3,278 mg/L. According to the proposed model, whether the substance concentration becomes increased or decreased largely depends on the ratio of initial quantity of inner landfill leachate and the rate of injection.