• Title/Summary/Keyword: Hydrological methods

Search Result 182, Processing Time 0.027 seconds

Filling in Hydrological Missing Data Using Imputation Methods (Imputation Method를 활용한 수문 결측자료의 보정)

  • Kang, Tae-Ho;Hong, Il-Pyo;Km, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1254-1259
    • /
    • 2009
  • 과거 관측된 수문자료는 분석을 통해 다양한 수문모형의 평가 및 예측과 수자원 정책결정에서 활용된다. 하지만 관측장비의 오작동 및 관측범위의 한계에 의해 수집된 자료에는 결측이 존재한다. 단순히 결측이 존재하는 벡터를 제외하거나, 결측이 존재하는 자료 구간에 선형성이 존재한다는 가정 하에 평균을 활용하기도 했으나, 이로 인하여 자료의 통계특성에 왜곡이 야기될 수 있다. 본 연구는 결측의 보정으로 자료가 보유하는 정보의 손실 및 왜곡을 최소화 할 수 있는 방안을 연구하고자 한다. 자료의 결측은 크게 완벽한 무작위 결측(missing completely at random, MCAR), 무작위 결측(missing at random, MAR), 무작위성이 없는 결측(nonrandom missingness)으로 분류되며, 수문자료는 결측을 포함한 기간이 그 외 기간의 자료와 통계적으로 동일하지는 않지만 결측자료의 추정이 가능한 MAR에 속하는 것이 일반적이므로 이를 가정으로 결측을 보정하였다. Local Lest Squares Imputation(LLSimput)을 결측의 추정을 위해 사용하였으며, 기존에 쉽게 사용되던 선형보간법과 비교하였다. 적용성 평가를 위해 소양강댐 일 유입량 자료에 1 - 5 %의 결측자료를 임의로 생성하였다. 동일한 양의 결측자료에 대해 100개의 셋을 사용하여 보정의 불확실성 범위를 적용된 방법에 대해 비교..평가하였으며, 결측 증가에 따른 보정효과의 변화를 검토하였다. Normalized Root Mean Squared Error(NRMSE)를 사용하여 적용된 두 방법을 평가한 결과, (1) 결측자료의 비가 낮을수록 간단한 선형보간법을 사용한 보정이 효과적이었다. (2) 하지만 결측의 비가 증가할수록 선형보간법의 보정효과는 점차 큰 불확실성과 낮은 보정효과를 보인 반면, (3) LLSimpute는 결측의 증가에 관계없이 일정한 보정효과 및 불확실성 범위를 나타내는 것으로 드러났다.

  • PDF

A Development of Inflow Forecasting Models for Multi-Purpose Reservior (다목적 저수지 유입량의 예측모형)

  • Sim, Sun-Bo;Kim, Man-Sik;Han, Jae-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1992.07a
    • /
    • pp.411-418
    • /
    • 1992
  • The purpose of this study is to develop dynamic-stochastic models that can forecast the inflow into reservoir during low/drought periods and flood periods. For the formulation of the models, the discrete transfer function is utilized to construct the deterministic characteristics, and the ARIMA model is utilized to construct the stochastic characteristics of residuals. The stochastic variations and structures of time series on hydrological data are examined by employing the auto/cross covariance function and auto/cross correlation function. Also, general modeling processes and forecasting method are used the model building methods of Box and Jenkins. For the verifications and applications of the developed models, the Chungju multi-purpose reservoir which is located in the South Han river systems is selected. Input data required are the current and past reservoir inflow and Yungchun water levels. In order to transform the water level at Yungchon into streamflows, the water level-streamflows rating curves at low/drought periods and flood periods are estimated. The models are calibrated with the flood periods of 1988 and 1989 and hourly data for 1990 flood are analyzed. Also, for the low/drought periods, daily data of 1988 and 1989 are calibrated, and daily data for 1989 are analyzed.

  • PDF

A Review for Caluculation of the Formula for Probable Rainfall Intensities Following Return Periods in the Hydrological Statistics. -On Cheong-Ju district- (재현기간별 확률 향우강도식 산정에 관한 수문통계학적 고찰-청주 지방을 중심으로-)

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.3
    • /
    • pp.3848-3859
    • /
    • 1975
  • The author attempted to find most suitable formulas for probable rainfall intensities with analysis and consideration for characteristics of rainfall intensities according to the short and long period return periods at Cheong-Joo district. Above mentioned formulas induced by this study can be contributed to the credibility of runoff estimation for urban sewerage system, drainage works in small catchment area and embankment works in the rivers. The results of this study are summarized as follows: 1 Calculation values by Gumbel-Chow method were selected as a mean values for the calculation of probable rainfall intensities according to return periods in the short period. 2. Calculations for probable rainfall intensities for long period are based upon to the result by Iwai's method. Talbot type, {{{{I= {a} over {t+b} }}}} is confirmed as a most suitable formula for probable rainfall intensities among calculation methods in the short periods at Cheong-Joo district. 4. Specific coefficient method, I24=RN24${\beta}$N was selected as a means of calculation for suitable formulas of probable rainfall intensities according to return periods in case of long period. 5. Runoff estimation with high credibility by rational formula can be anticipated by establishment for the most suitable probable rainfall intensities at Cheong-Joo district.

  • PDF

The Effect of Seasonal Input on Predicting Groundwater Level Using Artificial Neural Network (인공신경망을 이용한 지하수위 예측과 계절효과 반영을 위한 입력치의 영향)

  • Kim, Incheol;Lee, Junhwan
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.3
    • /
    • pp.125-133
    • /
    • 2018
  • Artificial neural network (ANN) is a powerful model to predict time series data and have been frequently adopted to predict groundwater level (GWL). Many researchers have also tried to improve the performance of ANN prediction for GWL in many ways. Dummies are usually used in ANN as input to reflect the seasonal effect on predicted results, which is necessary for improving the predicting performance of ANN. In this study, the effect of Dummy on the prediction performance was analyzed qualitatively and quantitatively using several graphical methods, correlation coefficient and performance index. It was observed that results predicted using dummies for ANN model indicated worse performance than those without dummies.

Unsteady Flow Analysis on Flood Characteristics in KEUM River Downstream (금강 하류 홍수의 부정류 해석)

  • 김현영;박승우
    • Water for future
    • /
    • v.22 no.1
    • /
    • pp.99-107
    • /
    • 1989
  • KEUM River downstream has some characteristics in which the dowunstream is affected with tidal motion, the several tributaries are forming a dendritic river system, and the channel cross-sections are irregular. The flood in this downstream can now be analyzed by the hydrological flood routing methods and under the assumption regarding the dendritic river system as a single reach. In this study the river system was used for the flood routing. The flood records which were measured in 1978 and 1987 were applied for calibration and verification of the unsteady flow model respectively. The results show that the flood at KANG-KYONG station was not affected with the tidal motion when the discharge at KONG-JU station exceeded about 5, 000$m^3$/sec, and that the bottle neck at IP-PO station intercepted the tidal influences.

  • PDF

Assessment and its control of non-point source pollution in Korea: Review (국내 비점오염 현황 및 제어방안: 총설)

  • Kang, Minwoo;Lee, Sangsoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.6
    • /
    • pp.457-467
    • /
    • 2019
  • Because non-point source pollution is very closely related to hydrological characteristics, its importance is highly emphasized nowadays along with accelerating climate change. Especially for Korea, the non-point source pollution and its control are entirely depending on runoff, precipitation, drainage, land use or development, based on geographical and topographical reasons of Korea. Many studies reported the physical (e.g., apparatus- and natural-type facilities, etc.) and chemical methods (e.g., organic and inorganic coagulants, etc.) of controling non-point pollutant source pollution, however, those are needed to be reconsidered along with climate change causing the unexpected patterns and amounts of precipitation and strengthen complexity of social community. The objectives of this study are to assess recent situations of non-point source pollution in Korea and its control means and to introduce possible effective ways of non-point source pollution against climate change in near future.

Techniques to Estimate Permeability Based on Spectral Induced Polarization Survey (광대역유도분극 탐사에 기초한 유체투과도 예측기법들)

  • Kim, Bitnarae;Cho, AHyun;Weller, Andreas;Nam, Myung Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.2_spc
    • /
    • pp.55-69
    • /
    • 2020
  • Permeability-analyzing methods commonly involve small-scale drilling, such as pumping or slug test, but it is difficult to identify overall distribution of permeability of the entire target sites due to high cost and time requirement. Spectral induced polarization (SIP) method is known to be capable of providing distributions of both the porosity and the pore size, the two major parameters determining permeability of the porous medium. The relationship between SIP variables and permeability has been studied to identify the hydrological characteristics of target sites. Kozeny-Carman formula has been improved through many experiments to better predict fluid permeability with electrical properties. In this work, the permeability prediction techniques based on SIP data were presented in accordance with the hydrogeological and electrical characteristics of a porous medium. Following the summary of the techniques, various models and related laboratory experiments were analyzed and examined. In addition, the field applicability of the prediction model was evaluated by field case analysis.

Assessment of the Effect of Digital Dlevation Model(DEM) Resolution on Simulation Results of the Physical Deterministic Lumped Parameters Hydrological Model (수치표고모형(DEM)의 해상도가 물리 결정 일괄 매개변수 수문모형의 모의 결과에 미치는 영향 평가)

  • Kim, Man-Kyu;Park, Jong-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.3
    • /
    • pp.151-165
    • /
    • 2008
  • Ground slope and aspect are important parameters for physical deterministic water balance models like BROOK90 or hydrological models which attempt to calculate evapotranspiration, snowmelt, and net radiation. This study constructs a Digital Elevation Model(DEM) and examines how DEM resolution can change the average ground slope and aspect of a river basin and attempts to evaluate the effects on simulation results of BROOK90, a physical deterministic water balance model. The study area is Byungcheon river basin in Korea. DEM has been constructed using a 1:25,000 digital map with the methods of TIN and Topo To Raster. The total of 20 DEMs with 10m~100m resolution have been constructed, with a 10m interval. It was found that the higher the DEM resolution, the steeper the average ground slope value of the Byungcheon river basin. In turn, the direct solar radiation of a hilly area in the model increased the evapotranspiration and reduced the stream runoff in the Byungcheon river basin. On the other hand, a lower DEM resolution tends to move the average aspect from southeast to south in the Byungcheon river basin. Accordingly, it was found that stream runoff was reduced and evapotranspiration increased.

  • PDF

Flood Runoff Simulation using Radar Rainfall and Distributed Hydrologic Model in Un-Gauged Basin : Imjin River Basin (레이더 강우와 분포형 수문모형을 이용한 미계측 유역의 홍수 유출모의: 임진강 유역)

  • Kim, Byung-Sik;Bae, Young-Hye;Park, Jung-Sool;Kim, Kyung-Tak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.3
    • /
    • pp.52-67
    • /
    • 2008
  • Recently, frequent occurrence of flash floods caused by climactic change has necessitated prompt and quantitative prediction of precipitation. In particular, the usability of rainfall radar that can carry out real-time observation and prediction of precipitation behavior has increased. Moreover, the use of distributed hydrological model that enables grid level analysis has increased for an efficient use of rainfall radar that provides grid data at 1km resolution. The use of distributed hydrologic model necessitates grid-type spatial data about target basins; to enhance reliability of flood runoff simulation, the use of visible and precise data is necessary. In this paper, physically based $Vflo^{TM}$ model and ModClark, a quasi-distributed hydrological model, were used to carry out flood runoff simulation and comparison of simulation results with data from Imjin River Basin, two-third of which is ungauged. The spatial scope of this study was divided into the whole Imjin River basin area, which includes ungauged area, and Imjin River basin area in South Korea for which relatively accurate and visible data are available. Peak flow and lag time outputs from the two simulations of each region were compared to analyze the impact of uncertainty in topographical parameters and soil parameters on flood runoff simulation and to propose effective methods for flood runoff simulation in ungauged regions.

  • PDF

Adequacy evaluation of the GLDAS and GLEAM evapotranspiration by eddy covariance method (에디공분산 방법에 의한 GLDAS와 GLEAM 증발산량의 적정성 평가)

  • Lee, Yeongil;Im, Baeseok;Kim, Kiyoung;Rhee, Kyounghoon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.889-902
    • /
    • 2020
  • This study was performed in Seolmacheon basin to evaluate the adequacy of GLDAS (Global Land Data Assimilation System) and GLEAM (Global Land Evaporation Amsterdam Model) evapotranspiration data. The verification data necessary for the evaluation of adequacy were calculated after processing the latent heat flux data produced in the Seolmacheon basin with the Koflux program. In order to gap-fill the empty period, alternative evapotranspiration was calculated in three ways: FAO-PM (Food and Agriculture Organization-Penman Monteith), MDV (Mean Diurnal Variation) and Kalman Filter. This study selected Kalman Filter method as the data gap-filling method because it showed the best Bias and RMSE among the three methods. The amount of GLDAS spatial evapotranspiration was calculated as Noah (version 2.1) with a time interval of 3 hours and a spatial resolution of 0.25°. The amount of GLEAM spatial evapotranspiration was calculated using GLEAM (version 3.1a). This study evaluated the spatial evapotranspiration of GLDAS and GLEAM as the evapotranspiration based on eddy covariance. As a result of evaluation, GLDAS spatial evapotranspiration showed better results than GLEAM. Accordingly, in this study, the GLDAS method was proposed as a method for calculating the amount of spatial evapotranspiration in the Seolmacheon basin.