• Title/Summary/Keyword: Hydrological impacts

Search Result 96, Processing Time 0.026 seconds

A Study on the Effectiveness Verification of Hydrological Cycle of Pervious Pavement using LID Simulator (LID 효율성 검증기기를 이용한 투수성 블록의 수문순환 효율성 검증에 관한 연구)

  • Kim, Mi Eun;Jang, Young Su;Nam, Chil Ho;Shin, Hyun Suk
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.5
    • /
    • pp.321-330
    • /
    • 2015
  • In recent, the impacts of urbanization on hydrology and water quality can be minimized with the use of Low Impact Development (LID) practices in urban areas. But, there are no ways to verify or to show the quantitative effectiveness with LID practices. This study designed and developed to perform experiments in natural or artificial representation of hydrological cycle, which is called rainfall-runoff simulator to be able to quantify factors in hydrological system. This simulator was applied to a pervious pavement block. The study conducted analysis of effectiveness for a pervious pavement block by comparing the results with a general pavement block. The result from the pervious pavement block showed remarkably reduction effect on surface runoff with increase of rainfall intensity and more duration time. Also, the simulator was possible to control no surface runoff by a rainfall intensity at 50 mm/hr for an hour. The research indicated possibility and effectiveness for LID practices. This might be widely available to apply to LID practices verification. Therefore, the study is possible to make use of practical standards on fundamental studies.

Evaluating meteorological and hydrological impacts on forest fire occurrences using partial least squares-structural equation modeling: a case of Gyeonggi-do (부분최소제곱 구조방정식모형을 이용한 경기도 지역 산불 발생 요인에 대한 기상 및 수문학적 요인의 영향 분석)

  • Kim, Dongwook;Yoo, Jiyoung;Son, Ho Jun;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.3
    • /
    • pp.145-156
    • /
    • 2021
  • Forest fires have frequently occurred around the world, and the damages are increasing. In Korea, most forest fires are initiated by human activities, but climate factors such as temperature, humidity, and wind speed have a great impact on combustion environment of forest fires. In this study, therefore, based on statistics of forest fires in Gyeonggi-do over the past five years, meteorological and hydrological factors (i.e., temperature, humidity, wind speed, precipitation, and drought) were selected in order to quantitatively investigate causal relationships with forest fire. We applied a partial least squares structural equation model (PLS-SEM), which is suitable for analyzing causality and predicting latent variables. The overall results indicated that the measurement and structural models of the PLS-SEM were statistically significant for all evaluation criteria, and meteorological factors such as humidity, temperature, and wind speed affected by amount of -0.42, 0.23 and 0.15 of standardized path coefficient, respectively, on forest fires, whereas hydrological factor such as drought had an effect of 0.23 on forest fires. Therefore, as a practical method, the suggested model can be used for analyzing and evaluating influencing factors of forest fire and also for planning response and preparation of forest fire disasters.

Ecological Comparisons of Stream Conditions Between the Unimpacted and Impacted Sites: Case Study

  • Lee, Jae-Hoon;Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.441-448
    • /
    • 2008
  • The purpose of this study was to analyze chemical water quality, fish trophic guilds, tolerance indicators, and fish community conditions in the Gap Stream and to compare the stream conditions between the unimpacted site and impacted site. This study was conducted in the physically stable season (May 2008) to minimize physical impacts such as flow and hydrological disturbance, and applied the study in the Gap Stream with two sites of unimpacted upstream site (Unim-S), mainly surrounded by forested area and impacted site (Im-S), influenced by the wastewater disposal plants and industrial complex in the urban region. Chemical data analysis showed that the degree of organic matter pollution, based on BOD, and COD, was $2{\sim}3$ fold greater in the Im-S than the Unim-S, and that TP, as eutrophication indicators, was 4.7 fold greater in the Im-S. Also, $NH_3-N$ was in 8.2 fold greater in the Im-S ($6.25\;mg\;L^{-1}$) than the Unim-S ($0.76\;mg\;L^{-1}$), indicating a massive influence of wastewater from the disposal plant. Similar results were found in other chemical parameters. Thus, chemical impacts in the Im-S were evident, compared to the unimpacted site. Evaluations of tolerant indicator species indicated that sensitive species were dominant in the Unim-S (23.9%) and tolerant species were dominant (97.8%) in the Im-S. Condition factor (CF) was averaged 0.95 ($0.68{\sim}1.18$) in the Unim-S and 1.08 ($0.93{\sim}1.22$) in the Im-S. Fish community in the Unim-S and Im-S was categorized as Zacco-community and Hemibarbus-community, respectively, and the community diversity index (H') was significantly (p<0.05) higher in the Unim-S (0.810) than the Im-S (0.466). Overall, our results suggest that the comparison approach of various chemical and ecological indicators provide important information in identifying multiple stressors in the stream ecosystems.

Effect of Climate Change and Urbanization on Flow and BOD Concentration Duration Curves (기후변화 및 도시화에 따른 유황곡선 및 BOD 농도지속곡선 변화)

  • Park, Kyung-Shin;Chung, Eun-Sung;Kim, Sang-Ug;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.12
    • /
    • pp.1091-1102
    • /
    • 2009
  • This study developed an integrated approach to climate change and urbanization impact assessment by linking models of SDSM (statistical downscaling model), HSPF (hydrological simulation program?Fortran) and ICM (impervious cover model). A case study of the Anyangcheon watershed illustrated how the proposed framework can be used to analyze the impacts of climate change and urbanization in terms of flood control, water security and water quality. The evaluation criteria were the variations of flow and pollutant concentration duration curves. In this study, nine scenarios including three climate (present condition, A1B and A2) and three urbanization scenarios were analyzed using HSPF model. As a result, climate change is a large influence on the flowrate and the urbanization affects the pollutant concentration. Therefore, the impacts of both climate change and urbanization must be included into the watershed management and water resources planning for sustainable development.

A Comparison of the Impact of Regional Anthropogenic Climatic Change in Urban and Rural Areas in South Korea (1955-2016) (최근 60년간 도시 및 농촌 지역의 국지적 기후변화 비교 분석)

  • Yoon, Dong-Hyun;Nam, Won-Ho;Hong, Eun-Mi;Kim, Taegon;Ho, Chang-Hoi;Hayes, Michael J.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.3
    • /
    • pp.37-50
    • /
    • 2018
  • Local climate characteristics for both urban and rural areas can be attributed to multiple factors. Two factors affecting these characteristics include: 1) greenhouse gases related to global warming, and 2) urban heat island (UHI) effects caused by changes in surface land use and energy balances related to rapid urbanization. Because of the unique hydrological and climatological characteristics of cities compared with rural and forested areas, distinguishing the impacts of global warming urbanization is important. In this study, we analyzed anthropogenic climatic changes caused by rapid urbanization. Weather elements (maximum temperature, minimum temperature, and precipitation) over the last 60 years (1955-2016) are compared in urban areas (Seoul, Incheon, Pohang, Daegu, Jeonju, Ulsan, Gwangju, Busan) and rural/forested areas (Gangneung, Chupungnyeong, Mokpo, and Yeosu). Temperature differences between these areas reveal the effects of urbanization and global warming. The findings of this study can be used to analyze and forecast the impacts of climate change and urbanization in other urban and non-urban areas.

Assessment of Upland Drought Using Soil Moisture Based on the Water Balance Analysis (물수지 기반 지역별 토양수분을 활용한 밭가뭄 평가)

  • Jeon, Min-Gi;Nam, Won-Ho;Yang, Mi-Hye;Mun, Young-Sik;Hong, Eun-Mi;Ok, Jung-Hun;Hwang, Seonah;Hur, Seung-Oh
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.1-11
    • /
    • 2021
  • Soil moisture plays a critical role in hydrological processes, land-atmosphere interactions and climate variability. It can limit vegetation growth as well as infiltration of rainfall and therefore very important for agriculture sector and food protection. Recently, due to the increased damage from drought caused by climate change, there is a frequent occurrence of shortage of agricultural water, making it difficult to supply and manage stable agricultural water. Efficient water management is necessary to reduce drought damage, and soil moisture management is important in case of upland crops. In this study, soil moisture was calculated based on the water balance model, and the suitability of soil moisture data was verified through the application. The regional soil moisture was calculated based on the meteorological data collected by the meteorological station, and applied the Runs theory. We analyzed the spatiotemporal variability of soil moisture and drought impacts, and analyzed the correlation between actual drought impacts and drought damage through correlation analysis of Standardized Precipitation Index (SPI). The soil moisture steadily decreased and increased until the rainy season, while the drought size steadily increased and decreased until the rainy season. The regional magnitude of the drought was large in Gyeonggi-do and Gyeongsang-do, and in winter, severe drought occurred in areas of Gangwon-do. As a result of comparative analysis with actual drought events, it was confirmed that there is a high correlation with SPI by each time scale drought events with a correlation coefficient.

Assessment of Future Climate Change Impacts on Hydrological Behavior and Stream Water Quality using SWAT Model (SWAT 모형을 이용한 미래 기후변화가 충주댐 유역의 수문학적 거동 및 하천수질에 미치는 영향 평가)

  • Park, Jong-Yoon;Park, Min-Ji;Ahn, So-Ra;Park, Geun-Ae;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.57-61
    • /
    • 2009
  • 본 연구에서는 SWAT(Soil and Water Assessment Tool) 모형을 이용하여 미래 기후변화가 댐 유역의 하천수질에 미치는 영향을 분석하였다. 충주댐 상류유역($6,585.1km^2$)에 대해 민감도 분석을 통해 최적의 유출및 유사관련 매개변수를 선정하였으며, 충주호 유입하천 상류 2개 지점/영월1, 영월2)과 유역 출구점을 대상으로 일별 유출량 및 월별 수질자료를 바탕으로 모형의 보정(1998-2000)및 검증(2001-2003)을 실시하였다. 미래 기후자료는 IPCC(Intergovernmental Panel on Climate Change)에서 제공하는 SRES/Special Report on Emission Scenarios) A2, A1B, B1 기후변화시나리오의 MIROC3.2 hires와 ECHAM5-OM 모델의 결과 값을 이용하였다. 먼저 과거 30년 기후자료(1977-2006, baseline)를 바탕으로 각 모델별 20C3M(20th Century Climate Coupled Model)의 모의 결과 값을 이용하여 강수와 온도를 보정한 뒤 Change Factor(CF) Method로 Downscaling 하였으며, 미래 기후변화 시나리오는 2020s, 2050s, 2080s의 세 기간으로 나누어 각각 분석 하였다. 기후변화 시나리오 적용에 따른 SWAT 모의결과로부터 기후변화가 수문학적 거동 및 하천수질에 미치는 영향을 평가하였다.

  • PDF

HSPF-Paddy Development for Simulating Pollutant Loadings from Paddy Fields

  • Jeon, Ji-Hong;Yoon, Chun G.;Jung, Kwang-Wook;Jang, Jae-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.7
    • /
    • pp.57-66
    • /
    • 2005
  • The Hydrological Simulation Program - FORTRAN (HSPF) was modified to simulate nonpoint pollutant loadings from paddy fields using a field experimental data collected during 2001-2002. The concept of a 'dike height' was added in a modified HSPF code, named HSPF-Paddy, to consider the function of retaining water by a weir at the field outlet. The effect of fertilization on the variances of nutrients on the soil surface and shallow soil layer was described mathematically with a Dirac delta function (or first-order kinetics). As confirmed through model verification, the HSPF-Paddy modifications were shown to represent the function of retaining water, varied ponded water, and surface runoff by forced drain during both rainy and non-rainy seasons and reasonably predicted the water balance and nutrients behavior in paddy fields. It is a distributed watershed model which, with the paddy modifications, can now simulate nonpoint pollutant loadings where paddy fields are dominant, and it can be used to evaluate the effects of paddy fields on the water quality at a basin scale, and assess the impacts of proposed BMPs applied to paddy fields.

Impacts of Impevious Cove Change on Pollutant Loads from the Daejeon-Stream Watershed Using AnnAGNPS (논문 - AnnAGNPS를 이용한 대전천 유역의 불투수면 변화에 따른 배출부하량 평가)

  • Chang, Seung-Woo;Kang, Moon-Seong;Song, In-Hong;Chung, Se-Woong
    • KCID journal
    • /
    • v.18 no.2
    • /
    • pp.3-14
    • /
    • 2011
  • Increased impervious surfaces alter stream hydrology resulting in lower flows during droughts and higher peak flows during floods. Not only urban area but also rural area has been expanded impervious surfaces because of increasing of greenhouses. The main objective of this study was to evaluate the performance of the AnnAGNPS (Annualized Non-Point Source Pollution Model) on the surface runoff characteristics of the Daejeon-Stream watershed, and to predict the hydrological effects due to increasing of impervious surfaces. The model parameters were obtained from the geographical information system (GIS) databases, and additional parameters calibrated with the observed data. The model was calibrated by using 2004 of the runoff data and validated by using 2002 data obtained from WAMIS (Water Management Information System) to compare the simulated results for the study watershed. R2 values and efficiency index (EI) between observed and simulated runoff were 0.78 and 0.80, respectively at the calibration period. In this study, expanding of impervious surfaces such as greenhouses caused increasing of surface runoff, but caused decreasing of total nitrogen and total phosphorus loads.

  • PDF

Evaluation of Eco-Hydrological Changes in the Geum River Considering Dam Operations : II. Hydraulic Fish Habitat Condition Analysis (댐 운영을 고려한 금강의 생태.수문학적 변화 평가 : II. 수리학적 어류서식처 조건 분석)

  • Park, Sang-Young;Kim, Jeong-Kon;Ko, Ick-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.5
    • /
    • pp.407-414
    • /
    • 2009
  • A quantitative analysis was conducted to study the impacts of artificial flow alteration on fish habitate condition change in the Geum River downstream the Daechung Multi-purpose Dam (DMD). River Analysis Package (RAP) was employed for the analysis and three fish species of black shiner, long nose barbel and Korean shinner were selected as icon species. The results of the analysis showed enhaced fish habitat conditions during low flow seasons in spring and fall after DMD construction, while the impact of the Youngdam Multipurpose Dam located upstream the DMD was insignificant. This result could be attributed to the fact that the increased flow during dry seasons helped create preferable habitat conditions for the fish species tested in this study.