• Title/Summary/Keyword: Hydrogen sulfate

Search Result 176, Processing Time 0.028 seconds

Sulfate Reduction at pH 5 in a High-Rate Membrane Bioreactor: Reactor Performance and Microbial Community Analyses

  • Bijmans, Martijn F. M.;Dopson, Mark;Peeters, Tom W. T.;Lens, Piet N. L.;Buisman, Cees J. N.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.7
    • /
    • pp.698-708
    • /
    • 2009
  • High rate sulfate reduction under acidic conditions opens possibilities for new process flow sheets that allow the selective recovery of metals from mining and metallurgical waste and process water. However, knowledge about high-rate sulfate reduction under acidic conditions is limited. This paper investigates sulfate reduction in a membrane bioreactor at a controlled pH of 5. Sulfate and formate were dosed using a pH-auxostat system while formate was converted into hydrogen, which was used for sulfate reduction. Sulfide was removed from the gas phase to prevent sulfide inhibition. This study shows a high-rate sulfate-reducing bioreactor system for the frrst time at pH 5, with a volumetric activity of 188 mmol $SO_4^{2-}$/I/d and a specific activity of 81 mmol $SO_4^{2-}$volatile suspended solids/d. The microbial community at the end of the reactor run consisted of a diverse mixed population including sulfate-reducing bacteria.

Dechlorination of Organochlorine Insecticide, Endosulfan by Zerovalent Iron (Zerovalent Iron에 의한 유기염소계 살충제 Endosulfan의 탈염소화)

  • Shin, Hyun-Su;Kim, Taek-Kyum;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.202-208
    • /
    • 2009
  • The dechlorination of endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine-3-oxide) and its metabolite, endosulfan sulfate via reaction with zerovalent iron under various pH conditions was studied using aqueous solution. The reaction products, which were probably produced from endosulfan and endosulfan sulfate by ZVI were identified by GC-MS. The lower the pH of reaction solution, the higher the transformation rate of endosulfan and endosulfan sulfate. The transformation rates of endosulfan and endosulfan sulfate in pH 3.0 by ZVI were 28% and 90% but those of endosulfan and endosulfan sulfate in mixture solution of water/acetone were 65% and 92%, respectively. The pH of reaction solution after ZVI treatment was increased to pH 10. Endosulfan was hydrolyzed at pH 10 but endosulfan sulfate was not hydrolyzed. Two unknown peaks were produced from endosulfan sulfate by treatment of ZVI. As a result of GC-MS analysis, unknown peaks were guessed to be structural isomer substituted hydrogen for chlorine.

Toxicity of Disinfectants in Flounder Paralichthys olivaceus, Black Rockfish Sebastes pachycephalus and Black Sea Bream Acanthopagrus schlegelii (시판 소독제의 넙치 Paralichthys olivaceus, 조피볼락 Sebastes pachycephalus, 감성돔 Acanthopagrus schlegelii에 대한 독성)

  • Park, Kyung-Hee;Kim, Seok-Ryel;Kang, So-Young;Jung, Sung-Ju;Oh, Myung-Joo
    • Journal of Aquaculture
    • /
    • v.21 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • Toxicity of ten commercial disinfectants(hydrogen peroxide, sodium hypochlorite, chlorine dioxide, povidon iodine, formaldehyde, glutaraldehyde, quaternary ammonium compounds(QAC), didecyl dimethyl ammonium chloride(DDAC), ortho-dichlorobenzene, and copper sulfate) was measured by chinook salmon embryo-214 cell line and three fish species: flounder Paralichthys olivaceus, black rockfish Sebastes pachycephalus, and black sea bream Acanthopagrus schlegelii. The $LC_{50}$ levels of 24 hours acute toxicity with the ten disinfectants were tested in three species of fish. Effectiveness of ten chemical disinfectants were varied by each chemical as well as by species. Hydrogen peroxide showed the higest activity at 201, 269, and 139 ppm in the flounder, the black rockfish, and black sea bream, respectively. DDAC showed the lowest activity at 2.1, 1.0, and 1.5 ppm in the flounder, the black rockfish, and black sea bream, respectively. The highest variation was observed in copper sulfate by both the chemicals and the species.

Treatment of Photographic Wastewater by Chemical Oxidation and Biological Treatment process (화학적산화 및 생물학적처리법에 의한 사진폐액의 처리)

  • 정경훈;최형일
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.1
    • /
    • pp.34-42
    • /
    • 1997
  • A laboratory experiments were performed to investigate the treatment of photographic processing wastewater by chemical oxidation and biological treatment system. The effect of reaction conditions such as hydrogen peroxide dosage, ferrous sulfate dosage and pH on the COD removal in Fenton oxidation were investigated. The optimal dosage of hydrogen peroxide was 2.58 M and 3.87 M for the developing and fixing process wastewater, respectively. The Fenton oxidation was most efficient in the pH range of 3-5 and the optimal condition for initial reaction pH was 5 for a developing process wastewater. With iron powder catalyst, the COD for a developing process wastewater was removed in lower pH than with ferrous sulfate catalyst. The removal efficiency of COD for refractory compounds such as Diethyleneglycol, Benzylalcohol, Hydroxylamine Sulfate, Ammonium Thiosulfate, Ammonium Ferric EDTA and Disodium EDTA in the photogaphic wastewater was found than 90% except Potassium Carbonate. When the photographic processing wastewater after pretreatment by Fenton oxidation was treated with batch activated sludge process, the addition of $KH_2PO_4$ as a phosphorous compound improved the removal efficiency of COD. During the continuous biological treatment of developing and fixing process wastewater after pretreatment by Fenton oxidation, the effluent COD concentration less than 100 mg/l was obtained at 0.425 and 0.25 kgCOD/m$^3$.d, respectively.

  • PDF

A Study on the Manufacturing and Properties of Hightech Easycare Wool (고감성 Easycare Wool의 제조 및 특성 연구)

  • Han Tae Sung;Park Jun Ho;Park Sang Woon;Jeon Byong Dae
    • Textile Coloration and Finishing
    • /
    • v.17 no.6 s.85
    • /
    • pp.51-59
    • /
    • 2005
  • To manufacture hightech easycare wool, there are several methods which use strong oxidising agent or the resin treatment, however, neither are environmentally friendly methods. Moreover it may deteriorate the handle. The aim of this study is to manufacture the hightech easycare wool using the modified Fenton method which can be formed by hydrogen peroxide and ferric sulfate and enzyme treatment. The method was pretreated by ferric sulfate on the wool surface and then the surface of wool scale was selectively removed by ferric ion catalyst. Subsequently the Enchiron which is one of the proteolytic enzymes was treated on the wool surface. The treated wool had the result of having optimum weight loss and excellent whiteness and good handle. Therefore implications of these results suggest that this method using the modified Fenton method and enzyme treatment may be one way of manufacturing the hightech easycare wool.

A study on preparation of luminol reagents for crime scene investigation (범죄현장 조사용 루미놀 시약의 제조법에 관한 연구)

  • Lim, Seung;Kim, Jung-mok;Jung, Ju Yeon;Lim, Si-Keun
    • Analytical Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.47-56
    • /
    • 2018
  • Finding the blood left at a crime scene is very important to reconstruct or solve a criminal case. Although numerous reagents have been developed for use at crime scenes, luminol is the most representative. Bluestar Forensic has been used in recent years, but is expensive and cannot be stored after preparation. This study aims to develop a new luminol reagent that can be stored for a long period of time while maintaining the chemiluminescence intensity at the level of Bluestar Forensic. Because luminol dissolves well in aqueous alkaline solutions, the use of sodium hydroxide in the preparation of luminol reagents can promote the decomposition of hydrogen peroxide. Magnesium sulfate, sodium silicate, and potassium triphosphate have been used as hydrogen peroxide stabilizers. The effects of the addition of these substances on the chemiluminescence emission intensity and the storage period of the luminol reagents were confirmed. The addition of a hydrogen peroxide stabilizer was shown to have no significant affect on the chemiluminescence emissions intensity or stabilized pH of the luminol reagent during storage. It also greatly increases the shelf life of the reagents. The use of magnesium sulfate as a hydrogen peroxide stabilizer is the most appropriate. When sodium perborate is used instead of hydrogen peroxide as an oxidizing agent, there is no significant change in the sensitivity and chemiluminescence emissions intensity, but the storage period is shortened. However, after the reaction with blood, the pH of the mixed solution does not increase significantly, and is judged to be more suitable than a reagent made of hydrogen peroxide.

Removal of Sulfur Dioxide by Cupric Oxide and Reduction of Cupric Sulfate by Hydrogen (산화구리에 의한 이산화황의 제거와 수소에 의한 황산구리의 환원)

  • 노용우;이명철;이재훈;이태희
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.83-89
    • /
    • 1994
  • The reaction of sulfur dioxide with cupric oxide was investigated over a temperature range of 300-50$0^{\circ}C$, and the regenaration reaction was studied using cupric sulfate and hydrogen over a temperature range of 240-35$0^{\circ}C$ in a fixed bed reactor. The experimental results showed that the efficiencies for elimination and regenaration reactions were maximum at 45$0^{\circ}C$ and at 30$0^{\circ}C$ respectively. In both cases the experimental data could be interpreted properly by shrinking unreacted core model while the chemical reaction is rate controlling step. The reaction rate constants were determined to be 24.88 exp(-6724/RT) (cm/min) for elimination reaction, and 0.0165 exp(-2047/RT)(cm/min ) for regeneration reaction.

  • PDF

Brønsted Acidic Ionic Liquids as Efficient Catalysts for Clean Synthesis of Carbamatoalkyl Naphthols

  • Tavakoli-Hoseini, Niloofar;Heravi, Majid M.;Bamoharram, Fatemeh F.;Davoodnia, Abolghasem
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.787-792
    • /
    • 2011
  • Under mild conditions and without any additional organic solvent, synthesis of carbamatoalkyl naphthols could be carried out in the present of two halogen-free Br${\phi}$nsted acidic ionic liquids, 3-methyl-1-(4-sulfonic acid)butylimidazolium hydrogen sulfate and N-(4-sulfonic acid)butylpyridinium hydrogen sulfate. A wide range of aromatic aldehydes easily undergo condensation with $\beta$-naphthol and methyl or benzyl carbamate to afford the desired products of good purity in excellent yields. The present methodology offers several advantages such as a simple procedure with an easy work-up, short reaction times, and excellent yields. The catalysts could be recycled and reused for several times without substantial reduction in their catalytic activities.