• Title/Summary/Keyword: Hydrogen release

Search Result 257, Processing Time 0.026 seconds

Effects of Samul-Tang Extract on Vascular Endothelial Cells from Hydrogen Peroxide-induced Injury (사물탕(四物湯)이 혈관내피세포(血管內皮細胞)에 미치는 영향(影響))

  • Nam, Chang-Kyu;Kim, Young-Kyun;Moon, Byung-Soon
    • The Journal of Internal Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.83-98
    • /
    • 1999
  • This study is designed to investigate the effects of Samul-Tang extract on the response of lactic dehydrogenase(LDH) release, cellular activity, lipid peroxidation, DNA synthesis and the changes of total protein of bovine pulmonary artery endothelial cells(PAEC) from hydrogen peroxide$(H_2O_2)$-induced injury. The results are as follows : 1. Samul-Tang significantly decreased $H_2O_2$-induced release of LDH from injured bovine PAEC. 2. Samul-Tang significantly repressed $H_2O_2$-induced cellular activity from injured bovine PAEC. 3. Samul-Tang significantly repressed $H_2O_2$-induced lipid peroxidation from injured bovine PAEC. 4. Samul-Tang significantly stimulated DNA synthesis in bovine PAEC. 5. Samul-Tang significantly repressed $H_2O_2$-induced changes of total protein volume from injured bovine PAEC. Above results suggest that Samul-Tang can protect bovine PAEC from $H_2O_2$-induced injury. These results can be effectively applied to the prevention and cure of cardiovascular and cerebrovascular diseases.

  • PDF

Performance of LNT Catalyst according to the Supply Condition of Hydrogen Reductants for Diesel Engine (디젤엔진에서 수소 환원제 공급 조건에 따른 LNT 촉매 성능)

  • Park, Cheol-Woong;Kim, Chang-Gi;Choi, Young;Kang, Kern-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.142-148
    • /
    • 2009
  • The direct injection(DI) diesel engine has become a prime candidate for future transportation needs because of its high thermal efficiency. However, nitrogen oxides(NOx) increase in the local high temperature regions and particulate matter (PM) increases in the diffusion flame region within diesel combustion. Therefore, the demand for developing a suitable after treatment device has been increased. NOx absorbing catalysts are based on the concept of NOx storage and release making it possible to reduce NOx emission in net oxidizing gas conditions. This De-NOx system, called the LNT(Lean NOx Trap) catalyst, absorbs NOx in lean exhaust gas conditions and release it in rich conditions. This technology can give high NOx conversion efficiency, but the right amount of reducing agent should be supplied into the catalytic converter at the right time. In this research, a performance characteristics of LNT with a hydrogen enriched gas as a reductant was examined and strategies of controlling the injection and rich exhaust gas condition were studied. The NOx reduction efficiency is closely connected to the injection timing and duration of reductant. LNT can reduce NOx efficiently with only 1 % fuel penalty.

NUMERICAL METHOD FOR EVALUATION OF HYDROGEN FLAME ACCELERATION IN A COMPARTMENT OF A NUCLEAR POWER PLANT (원자력발전소 격실에서의 수소화염 가속에 대한 수치해석 연구)

  • Kim, Jong-Tae;Kim, Sang-Baik;Kim, Hoo-Joong
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.67-75
    • /
    • 2010
  • Hydrogen safety is one of important issues for future public usage of hydrogen. When hydrogen is released in a compartment, the occurrence of detonation must be prohibited. In order to evaluate the possibility of DDT (Deflagration to Detonation Transition) in the compartment with the hydrogen release, sigma-lambda criteria which were developed from experimental data are commonly used. But they give a little conservative results because they do not consider the detailed geometrical effect of the compartment. This is the main reason of the need to mechanistic combustion model for evaluation of hydrogen flame propagation and acceleration. In this study, sigma-lambda criteria and combustion model were systematically applied to evaluate a possibility of DDT in a IRWST compartment of APR1400 nuclear power plant during a hypothetical accident. A combustion model in an open source CFD code OpenFOAM has been applied for analyses of hydrogen flame propagation. The model was validated by evaluating the flame acceleration tests conducted in FLAME facility. And it was applied to evaluate the characteristics of a hydrogen flame propagation in the IRWST compartment of APR1400.

A Study on the Hydrogen Degradation of HDPE by Hydrogen Pressure of 90 MPa (90 MPa의 수소 압력에 의한 HDPE의 수소 열화 연구)

  • MINA KIM;CHANG HOON LEE
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.3
    • /
    • pp.307-315
    • /
    • 2023
  • The physical and chemical changes exhibited by high density polyethylene (HDPE) after treatment with hydrogen at a pressure of 90 MPa followed by rapid release of the hydrogen were studied. X-ray diffraction, differential scanning calorimetry, thermo gravimetric analysis, and attenuated total reflectance (ATR)-fourier transform infrared (FTIR) were used for this purpose. As a result, it was found that the degree of crystallinity of HDPE decreased after hydrogen pressure treatment, while the average thickness of lamellae that constitute the crystals and the melting temperature of the crystalline region actually increased. The decomposition temperature also increased by about 3℃. In addition, it was found that the hydrogen bonding network between -OH groups in the HDPE sample was strengthened and partial chain scission occurred. These cut chains were found to be terminated by oxidative degradation such as cross-linking between chains, -C=O, -C-O, and -CHO, or by the formation of -CH3 at the chain ends, as confirmed by ATR-FTIR.

Experimentally Evaluation of a Liquid Pool Spreading Model with Continuous Release (연속누출을 가지는 액체 풀 확산 모델의 실험적 평가)

  • KIM, TAEHOON;DO, KYU HYUNG;KIM, MYUNGBAE;HAN, YONG-SHIK;CHOI, BYUNG-IL
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.6
    • /
    • pp.659-665
    • /
    • 2015
  • In this study, an experimental investigation is performed for evaluation of a liquid pool spreading model with continuous release. The model considered in this study was developed based on a concept which means that the liquid pool spreading is governed by a balance between an inertia force from gravity and a frictional force from friction with the ground under the whole base of the liquid pool. For evaluation of the model, experimental study is performed. Experimental apparatus is setup for measuring release rate, spreading velocity, and evaporation rate from a liquid pool. The experimental results are compared with results from the model. By applying release and evaporation rates obtained from experiments to solving the model, liquid pool radius variation according to time can be obtained. For evaluation of an effect of friction force in the spreading model, results obtained from the models with and without the friction force are compared with those obtained from the experiments. As a result, it is shown that there exists a large deviation between the results obtained from the model without the friction force and the experimental results. On the other hand, the tendency of liquid pool radius variation according to time is similar between the results obtained from the model without the friction force and the experimental results.

MCS/IEI Prevalence Rate of Workers Around an Accidental Release of Hydrogen Fluoride in Gumi Industrial Complex (구미공단 불화수소 누출사고 주변 지역 근로자들의 화학물질과민증 유병률)

  • Han, Hye-Ji;Woo, Kuck-Hyeun;Choi, Sung-Yong;Jeon, Byoung-Hak;Choi, Sangjun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.4
    • /
    • pp.534-541
    • /
    • 2015
  • Objectives: This study was conducted to evaluate the prevalence rate of multiple chemical sensitivity/idiopathic environmental intolerance(MCS/IEI) among workers in the Gumi industrial complex around the region of accidental release of hydrogen fluoride in 2012. Materials: We evaluated MCS/IEI using the Korean version of the Quick Environmental Exposure and Sensitivity Inventory(QEESI). A total of 535 workers at six manufacturing companies in the Gumi industrial complex were investigated using self-administered questionnaires from February to March 2015. After exclusion of incompletely answered questionnaires, 271 were analyzed. Results: The prevalence rate and proved positive rate of MCS/IEI were 5.9%(16 out of 271) and 3.7%(10 out of 271), respectively. The scores of chemical intolerance, other intolerance, symptom severity and life impact were significantly higher(p<0.05) in females than those of males. In terms of masking index scores, males showed significantly higher(p=0.003) than female. The self-reported MCS/IEI prevalence rate, 7.7%, of workers exposed to hydrogen fluoride in 2012 was higher than no-exposure group(5.6%), but not statistically significant(p=0.815). Conclusions: Although the prevalence rate of MCS/IEI symptoms of workers exposed to hydrogen fluoride gas in 2012 was not significantly higher than no-exposure group, it is necessary to conduct follow-up study on the exposure group of hydrogen fluoride.

The Evaluation of Hydrogen Leakage Safety for the High Pressure Hydrogen System of Fuel Cell Vehicle (연료전지자동차의 고압수소저장시스템 수소 누출 안전성 평가)

  • Kim, Hyun-Ki;Choi, Young-Min;Kim, Sang-Hyun;Shim, Ji-Hyun;Hwang, In-Chul
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.4
    • /
    • pp.316-322
    • /
    • 2012
  • A fuel cell vehicle has the hydrogen detection sensors for checking the hydrogen leakage because it use hydrogen for its fuel and can't use a odorant to protect the fuel cell stack. To verify the hydrogen safety of leakage we select the high possible leak points of fittings in hydrogen storage system and test the leaking behavior at them. The hydrogen leakage flow rate is 10, 40, 118 NL/min and the criterion for maximum hydrogen leakage is based on allowing an equivalent release of combustion energy as permitted by gasoline vehicles in FMVSS301. There are total 18EA hydrogen leakage detection sensors installed in test system. we acquire the hydrogen leakage detection time and determine the ranking. Hydrogen leakage detection time decrease when hydrogen leakage flow rate increase. The minimum hydrogen leakage detection time is about 3 seconds when the flow rate is 118NL/min. In this study, we optimize hydrogen sensor position in fuel cell vehicle and verify the hydrogen leakage safety because there is no inflow inside the vehicle.

Preparation of Buccal Patch Composed of Carbopol, Poloxamer and Hydroxypropyl Methylcellulose

  • Chun, Myung-Kwan;Kwak, Byoung-Tae;Choi, Hoo-Kyun
    • Archives of Pharmacal Research
    • /
    • v.26 no.11
    • /
    • pp.973-978
    • /
    • 2003
  • A polymeric film composed of Carbopol, Poloxamer and hydroxypropyl methylcellulose was prepared to develop a buccal patch and the effects of composition of the film on adhesion time, swelling ratio, and dissolution of the film were studied. The effects of plasticizers or penetration enhancers on the release of triamcinolone acetonide (TAA) were also studied. The hydrogen bonding between Carbopol and Poloxamer played important role in reducing swelling ratio and dissolution rate of polymer film and increasing adhesion time. The swelling ratio of the composite film was significantly reduced and the adhesion time was increased when compared with Carbopol film. As the ratio of Poloxamer to hydroxypropyl methylcellulose increased from 0/66 to 33/33, the release rate of TAA decreased. However, no further significant decrease of release rate was observed beyond the ratio of 33/33. The release rate of TAA in the polymeric film containing polyethylene glycol 400, a plasticizer, showed the highest release rate followed by triethyl citrate, and castor oil. The release rate of TAA from the polymeric film containing permeation enhancers was slower than that from the control without enhancers. Therefore, these observations indicated that a preparation of a buccal patch is feasible with the polymeric film composed of Cabopol, Poloxamer and hydropropyl methylcellulose.

The Function of Hydrogen Chloride on Methane-Air Premixed Flame (메탄-공기 예혼합 화염에서 염화수소의 역할)

  • Shin, Sung-Su;Lee, Ki-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.979-987
    • /
    • 2005
  • Numerical simulations were performed at atmospheric pressure in order to understand the effect of additives on flame speed, flame temperature, radical concentrations, $NO_x$ formation, and heat flux in freely propagating $CH_4-Air$ flames. The additives were both carbon dioxide and hydrogen chloride which had a combination of physical and chemical behavior on hydrocarbon flame. In the flame established with the same mole of methane and additive, hydrogen chloride significantly contributed toward the reduction of flame speed, flame temperature, $NO_x$ formation and heat flux by the chemical effect, whereas carbon dioxide mainly did so by the physical effect. The impact of hydrogen chloride on the decrease of the radical concentration was about $1.4\~3.0$ times as large as that of carbon dioxide. Hydrogen chloride had higher effect on the reduction of $EI_{NO}$ than carbon dioxide because of the chemical effect of hydrogen chloride. The reaction, $OH+HCl{\rightarrow}Cl+H_2O$, played an important role in the heat flux from flames added by hydrogen chloride instead of the reaction, $OH+H_2{\rightarrow}H+H_2O$ which was an important reaction in hydrocarbon flames.

Offsite Consequence Modeling for Evacuation Distances against Accidental Hydrogen Fluoride (HF) Release Scenarios (Hydrogen Fluoride (HF) 누출 사고 시 피해 범위 예측 및 장외영향평가를 위한 모델링 활용 방법)

  • Kim, Jeonghwan;Jung, Seungho
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.582-585
    • /
    • 2016
  • This study intends to provide initial evacuation distances for the public in case of accidental releases of hydrogen fluoride (HF). HF is a very toxic chemical that is widely used in the chemical, electrical, and electronics industries. Consequence modeling programs, such as ALOHA and PHAST, were used to help formulate a contingency plan in case of an HF leak. For the purpose of this study, the release of entire quantity of HF in 10 min is defined as a worst-case scenario and the release from a partial line rupture is used as an alternative case scenario as National Institute of Chemical Safety (NICS) guidelines. Once the discharge rates were calculated based on the scenarios, the ERPG-2 endpoint distances have been obtained for representative daytime and nighttime weather conditions. This paper presents graphs that can be used to enact swift evacuation orders and emergency response plans in the case of accidental releases of HF.