DOI QR코드

DOI QR Code

Offsite Consequence Modeling for Evacuation Distances against Accidental Hydrogen Fluoride (HF) Release Scenarios

Hydrogen Fluoride (HF) 누출 사고 시 피해 범위 예측 및 장외영향평가를 위한 모델링 활용 방법

  • Kim, Jeonghwan (Department of Environmental and Safety Engineering, Ajou University) ;
  • Jung, Seungho (Department of Environmental and Safety Engineering, Ajou University)
  • 김정환 (아주대학교 환경안전공학과) ;
  • 정승호 (아주대학교 환경안전공학과)
  • Received : 2015.07.03
  • Accepted : 2016.03.15
  • Published : 2016.08.01

Abstract

This study intends to provide initial evacuation distances for the public in case of accidental releases of hydrogen fluoride (HF). HF is a very toxic chemical that is widely used in the chemical, electrical, and electronics industries. Consequence modeling programs, such as ALOHA and PHAST, were used to help formulate a contingency plan in case of an HF leak. For the purpose of this study, the release of entire quantity of HF in 10 min is defined as a worst-case scenario and the release from a partial line rupture is used as an alternative case scenario as National Institute of Chemical Safety (NICS) guidelines. Once the discharge rates were calculated based on the scenarios, the ERPG-2 endpoint distances have been obtained for representative daytime and nighttime weather conditions. This paper presents graphs that can be used to enact swift evacuation orders and emergency response plans in the case of accidental releases of HF.

ALOHA, PHAST 등의 사고영향평가 프로그램들을 활용하여 전기 전자 등의 산업 분야에서 많이 쓰이며 인체에 유독한 HF 가 누출되는 사고의 발생 시 대피해야 하는 초기 이격거리에 대한 연구를 수행하였다. 다양한 공정조건과 상태로 저장되어 있는 HF의 사고시나리오를 간단하게 정의하기는 어렵지만 화학물질안전원의 지침대로 10분 내 총 저장량 누출을 최악의 시나리오, 결속된 배관의 일부 파열을 대안의 시나리오로 하여 비상상황을 가정하였다. 그로부터 사고모델링의 시작인 누출속도 산정을 한 후 보수적으로 확산모델링을 적용하여 밤과 낮의 대표적인 기상상태에 따라 일반적인 대피거리로 권고되는 ERPG-2 농도가 도달하는 끝점거리를 구하여 현장에서 신속하게 쓸 수 있는 간단한 그래프와 같은 형태로 제시하였다. 이는 유사시를 대비한 사전적인 성격의 그래프로 화학물질 누출사고 시 신속한 비상대응계획을 수립하는 데 도움이 될 것이다.

Keywords

References

  1. Park, K. S., Kim, T. O., Kim, J. Y., Yoo, B. H. and Park, D. J., "A Study on Consequence Analysis of Hydrofluoric Acid Release Accident in Gumi Industrial Area," Korean Journal of Hazardous Materials., 1(1), 15-21(2013).
  2. Lee, Y. G., Gu, S. G., Choi, I. J., Kim, W., Sun, O. N. and Kim, S. B., "Study on the Distribution of Fluorides in Plants and the Estimation of Ambient Concentration of Hydrogen Fluoride Around the Area of the Accidental Release of Hydrogen Fluoride in Gumi," J. Environ. Health Sci., 39(4), 346-353(2013).
  3. Ko, J. S., "Study on the Consequence Effect Analysis & Process Hazard Review at Gas Release from Hydrogen Flouride Storage Tank," Journal of the Korea Society of Disaster Information., 9(4), 449-461(2013).
  4. Joo, H. S., Lee, Y. S., Lim, O. J. and Yoo, J. M., "A Study on the Improvement of Environmental Impact Assessment of Industrial Complexes Based on Risk Assessment of Chemical Leakage Accidents," Business Report, Korea Environment Institute., 2439-2709 (2013).
  5. Kim, J. H., Yang, J. M., Yong, J. W., Ko, B. S., Yoo, B. T. and Ko, J. W., "Development of Hazardous Work Mapping Methodology Based on Layout of Workplace Handling The Accident Preparedness Substances," Korean Chem. Eng. Res., 52(6), 736-742(2014). https://doi.org/10.9713/kcer.2014.52.6.736
  6. Nics, "Key info Guide for Accident Preparedness Substances", NICS(2014).
  7. https://ko.wikipedia.org/wiki/.
  8. AIHA Guideline Foundation, "2013 ERPG/WEEL Handbook," AIHA(2013).
  9. http://www.epa.gov/cameo/aloha-software.
  10. https://www.dnvgl.com/services/hazard-analysis-phast-1675.
  11. NICS, "Technical Guideline on the Selection of the Accident Scenarios," NICS(2014).
  12. Hanna, S., Dharmavaram, S., Zhang, J., Sykes, I., Witlox, H., Khajehnajafi, S. and Koslan, K., "Comparison of Six Widely-used Dense Gas Dispersion Models for Three Recent Chlorine Railcar Accidents," Process Safety Progress, 27(3), 248-259(2008). https://doi.org/10.1002/prs.10257
  13. Kim, K. H., Shin. D. I. and Yoon, E. S., "Risk Analysis Using Automatically Synthesized Robust Accident Scenarios and Consequence Assessment for Chemical Processes: Process Partition and Consequence Analysis Approach," Korean J. Chem. Eng., 20(6), 992-999(2003). https://doi.org/10.1007/BF02706927

Cited by

  1. Analysis of Impact Zone of Quantitative Risk Assessment based on Accident Scenarios by Meteorological Factors vol.39, pp.12, 2017, https://doi.org/10.4491/KSEE.2017.39.12.685
  2. Sensitivity Analysis of Weather Variables on Offsite Consequence Analysis Tools in South Korea and the United States vol.15, pp.5, 2018, https://doi.org/10.3390/ijerph15051027
  3. 구미 불산사고 사례연구를 통한 예측모델 피해영향범위 비교 vol.55, pp.1, 2016, https://doi.org/10.9713/kcer.2017.55.1.48
  4. 암모니아 입하 및 저장시설에서의 위험도 관리 vol.21, pp.5, 2016, https://doi.org/10.7842/kigas.2017.21.5.95
  5. 불화수소 누출사고 사례를 통한 주변 농작물의 환경피해 vol.38, pp.1, 2016, https://doi.org/10.5338/kjea.2019.38.1.2
  6. 지상 고압 천연가스 배관의 최소 이격거리 기준에 관한 연구 vol.57, pp.2, 2016, https://doi.org/10.9713/kcer.2019.57.2.225
  7. Case Study: Safety Assessment of Plant Layout between Ethylene Storage Tanks and Process Equipment According to Capacity and Weather Conditions vol.17, pp.8, 2016, https://doi.org/10.3390/ijerph17082849
  8. 현장 중심의 화학테러·사고 대응을 위한 피해 영향 범위 평가 개선 방안 연구 vol.10, pp.8, 2016, https://doi.org/10.22156/cs4smb.2020.10.08.127
  9. Changes in Risk in Medium Business Plating and Paint Manufacturing Plants following the Revision of the Korean Chemical Accident Prevention System vol.18, pp.22, 2016, https://doi.org/10.3390/ijerph182211982