• 제목/요약/키워드: Hydrogen refueling tank

검색결과 16건 처리시간 0.021초

수소충전용 직접 및 간접 냉각시스템 비교 평가 연구 (The Study of Comparison of Cooling System for H2 Discharge Station)

  • 이현찬;이종열;배찬효;허정호;전재영
    • 한국수소및신에너지학회논문집
    • /
    • 제30권2호
    • /
    • pp.163-169
    • /
    • 2019
  • This study is a research to compare efficiency of new cooling system (chiller, pre-cooler) to that of the conventional system at the hydrogen refueling station (HRS). This study includes contents for thermodynamic comparison of cooling system for HRS and comparison of pros and cons of its components. So It is to establish design concept of cooling system of HRS supplying with fuel cell electric vehicle (FCEV). HRS is charging high pressure H2 (700 bar) to FCEV. However cooling system is need to prevent temperature rise in tank. This cooling system consists of pre-cooler and chiller system.

압축 수소 충전 공정 해석을 위한 대류 열전달 계수 비교 분석 (Comparative Investigation of Convective Heat Transfer Coefficients for Analyzing Compressed Hydrogen Fueling Process)

  • 서효민;박병흥
    • 한국가스학회지
    • /
    • 제27권3호
    • /
    • pp.123-133
    • /
    • 2023
  • 상용 수소연료전지 차량은 기체 수소를 고압으로 압축하여 차량 내 저장 탱크로 저장하는 방식으로 충전이 진행된다. 이러한 압축 과정은 기체의 온도 상승을 유발하며, 저장 탱크의 안전성을 확보하기 위해 온도는 제한된다. 따라서 이러한 온도 상승을 설명하기 위한 열전달 모델이 필요하다. 열전달 모델은 대류 열전달 현상을 포함하며 정확한 대류 열전달 계수 추산이 요구된다. 본 연구에서는 수소 충전 과정에서의 대류 열전달 계수를 물리적 현상을 고려한 다양한 상관관계식을 이용하여 계산하고 비교 분석하였다. 수소 충전 과정은 디스펜서로부터 탱크 입구까지의 충전라인과 차량 내 저장 탱크로 분류하였고, 각각의 내부 및 외부에서의 대류 열전달 계수를 질량 유량, 직경, 온도와 압력 등 공정 변수에 따라 추산하였다. 그 결과, 충전라인 내부의 경우 저장 탱크 내부에서보다 대류 열전달 계수가 약 1000배 크게 나타났고, 충전라인 외부의 경우 저장 탱크 외부에서보다 대류 열전달 계수가 약 3배 크게 나타났다. 마지막으로 각 과정에서의 대류 열전달 계수를 종합 분석한 결과 전체 수소 충전 과정에서 저장 탱크 외부에서의 열전달 계수가 가장 낮아 열전달 현상을 지배하는 것으로 나타났다.

고압탱크에서 수소가스의 압축성 인자에 관한 이론적 연구 (A Theoretical Study on the Compressibility Factor of Hydrogen Gas in the High Pressure Tank)

  • 이길강;허항;이길초;권정태
    • 한국수소및신에너지학회논문집
    • /
    • 제34권2호
    • /
    • pp.162-168
    • /
    • 2023
  • The fast refueling process of compressed hydrogen has an important impact on the filling efficiency and safety. With the development and use of hydrogen energy, the demand for precision measurement of filling hydrogen thermodynamic parameters is also increasing. In this paper, the compressibility factor calculation model of high-pressure hydrogen gas was studied, and the basic equation of state and thermo-physical parameters were calculated. The hydrogen density data provided by the National Institute of Standards and Technology was compared with the calculation results of each model. Results show that at a pressure of 0.1-100 MPa and a temperature of 233-363 K, the calculation accuracy of the Zheng-Li equation of state was less than 0.5%. In the range of 0.1-70 MPa, the accuracy of Redich-Kwong equation is less than 3%. The hydrogen pressure more influences on the compressibility factor than the hydrogen temperature does. Using the Zheng-Li equation of state to calculate the compressibility factor of on-board high pressure hydrogen can obtain high accuracy.

APR1400의 급수완전상실사고 시 격납건물 내에서 수소와 수증기의 3차원 거동에 대한 수치해석 (NUMERICAL ANALYSIS OF THE HYDROGEN-STEAM BEHAVIOR IN THE APR1400 CONTAINMENT DURING A HYPOTHETICAL TOTAL LOSS OF FEED WATER ACCIDENT)

  • 김종태;홍성환;김상백;김희동
    • 한국전산유체공학회지
    • /
    • 제10권3호
    • /
    • pp.9-18
    • /
    • 2005
  • During a hypothetical severe accident in a nuclear power plant (NPP), hydrogen is generated by the active reaction of fuel-cladding and steam in the reactor pressure vessel and released with steam into the containment. In order to mitigate hydrogen hazards possibly occurred in the NPP containment, hydrogen mitigation system (HMS) is usually adopted. The design of the next generation NPP (APR1400) designed in Korea specifies 26 passive autocatalytic recombiners and 10 igniters installed in the containment for the hydrogen mitigation. in this study, the analysis of the hydrogen and steam behavior during a total lose of feed water (TLOFW) accident in the APR1400 containment has been conducted by using the CFD code GASFLOW. During the accident, a huge amount of hot water, steam, and hydrogen is released in the in-containment refueling water storage tank (IRWST). The current design of the APR1400 includes flap-type dampers at the IRWST vents which are operated depending on the pressure difference between inside and outside of the IRWST. it was found that the flaps strongly affects the flow structure of the steam and hydrogen in the containment. The possibilities of a flame acceleration and transition from deflagration to detonation (DDT) were evaluated by using Sigma-Lambda criteria. Numerical results indicate the DDT possibility could be heavily reduced in the IRWST compartment when the flaps are installed.

소듐냉각고속로 원형로 소듐-물 반응 압력완화계통의 급수배출 및 수소방출 설계 요건 연구 (Investigation on Design Requirements of Feed Water Drain and Hydrogen Vent Systems for the Prototype Generation IV Sodium Cooled Fast Reactor)

  • 박선희;예휘열;이태호
    • Korean Chemical Engineering Research
    • /
    • 제55권2호
    • /
    • pp.170-179
    • /
    • 2017
  • 본 논문은 소듐냉각고속로 원형로 소듐-물 반응 압력완화계통의 급수배출부와 수소방출부의 설계요건 도출을 목적으로 한다. 증기발생기 전열관 누설에 의한 소듐-물 반응 발생 시, 증기발생기 내의 급수 증기를 신속하게 배출하는 조건을 도출하기 위해 급수덤프탱크 가스방출배관의 단면적과 증기발생기 급수배출배관의 수직길이를 변화시켜 연구를 수행하였다. 정상운전과 재장전운전에 대해 각각 계산을 수행하여 급수덤프탱크 가스방출배관의 단면적과 증기발생기 급수배출배관의 수직길이를 결정하였다. 정상운전 조건에서 소듐-물 반응 발생 시, 생성물인 수소에 의해 형성되는 과압이 소듐덤프탱크의 설계압력을 만족시킬 수 있도록 하는 가스방출배관의 직경을 도출하였고, 이 때 대기로 방출되는 수소의 유량과 농도를 계산하였다. 본 논문의 계산결과는 향후 소듐냉각고속로 원형로의 소듐-물 반응 압력완화계통의 설계요건으로 활용될 예정이다.

IRWST 환형관 실험장치 내의 수소화염 가속현상에 대한 CFD 해석 연구 (CFD ANALYSIS FOR HYDROGEN FLAME ACCELERATION IN THE IRWST ANNULUS TEST FACILITY)

  • 강형석;하광순;김상백;홍성완
    • 한국전산유체공학회지
    • /
    • 제17권3호
    • /
    • pp.75-86
    • /
    • 2012
  • We developed a preliminary CFD analysis methodology to predict a pressure build up due to hydrogen flame acceleration in the APR1400 IRWST on the basis of CFD analysis results for test data of hydrogen flame acceleration in a scaled-down test facility performed by Korea Atomic Energy Research Institute. We found out that ANSYS CFX-13 with a combustion model of the so-called turbulent flame closure and a model constant of A = 5.0, a grid model with a hexahedral cell length of 5.0 mm, and a time step size of $1.0{\times}10^{-5}$ s can be a useful tool to predict the pressure build up due to the hydrogen flame acceleration in the test results. Through the comparison of the simulated results with the test results, we found out that the proposed CFD analysis methodology enables us to predict the peak pressure within an error range of about ${\pm}29%$ for the hydrogen concentration of 19.5%. However, the error ranges of the peak pressure for the hydrogen concentration of 15.4% and 18.6% were about 66% and 51%, respectively. To reduce the error ranges in case of the hydrogen concentration of 15.4% and 18.6%, some uncertainties of the test conditions should be clarified. In addition, an investigation for a possibility of flame extinction in the test results should be performed.