• Title/Summary/Keyword: Hydrogen policy

Search Result 118, Processing Time 0.027 seconds

The Significance of Long-term Perception on Renewable Energy and Climate Change (신재생에너지와 기후변화에 대한 장기간 인식조사가 갖는 함의)

  • AHN, JOONG WOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.117-123
    • /
    • 2018
  • The long-term perception investigation of environment is needed for the persistence of each country's policy on climate change, which is greatly influenced by external factors. Long term data on perception and attitudes of people's thought can be a big data point for climate change and consistent policies can be implemented with the need for public demand. Information on the perception of the general public regarding the environment should be carried out as a basis for the national environmental policy.

Multi-criteria Decision Making Method for Developing Greenhouse Gas Technologies Strategically Considering Scale Efficiency: AHP/DEA CCR-I and BCC-I Integrated model Approach (규모의 경제성을 고려한 전략적 온실가스저감기술 개발을 위한 다기준의사결정기법: AHP/DEA CCR-I 및 BCC-I 혼합모형 적용)

  • Lee, Seong-Kon;Mogi, Gento;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.6
    • /
    • pp.552-560
    • /
    • 2008
  • In 1997, Korean government established the National Energy and Resources Plan, which targeted from 1997 to 2005 with strategic energy technology development. At the end of 2005, Korean government built a New National Energy and Resources Plan preparing for upcoming 10 years from 2006 until 2015 based on energy technology trees comparing with the previous plan, which based on the energy R&D projects. In this research, we prioritize the relative preferences and efficiency by an AHP/DEA CCR-I and BCC-I integrated model approach considering scale efficiency for well focused R&D and efficiency of developing Greenhouse Gas technologies as an extended research from a view point of econometrics as an extended research.

Performance Evaluation of Hydrogen Separation and Generator for Hydrogen Water (수소수를 위한 수소분리 및 생성기 성능 평가)

  • Kim, Gui-Jung;Han, Jung-Soo
    • Journal of Digital Convergence
    • /
    • v.14 no.9
    • /
    • pp.281-286
    • /
    • 2016
  • In this paper, we optimized the structure of hydrogen water generator and assessed by developing a generator with dissolved hydrogen amount(1,000~1,200 ppb) of world-class level. Evaluation is divided into four types, such as dissolved hydrogen amount, pH, maximum pressure, redox potential, and it was evaluated for each of the targets. It was performed through the experiment of four in all five times and all of them show superiority results appearing in the target range. In addition, the assessment got 25/30 functionality, 17/20 maintainability, 26/30 usability, and 19/20 efficiency. In particular, we proved the validity of this study in high efficiency. We developed this hydrogen water generator system as possible to be substitution of water purifier.

An Experimental Study on the FMEA Evaluation of Non-metallic Materials in High-Pressure Hydrogen Facility (고압 수소설비용 비금속부품 소재의 FMEA 평가를 통한 실험적 연구)

  • Ahn, Jeongjin;Kim, Wanjin;Kim, Laehyun
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.10-17
    • /
    • 2019
  • According to South Korea's policy of supplying eco-friendly hydrogen vehicles, related industries are actively conducting research on the development of hydrogen cars and hydrogen charging station infrastructure. On the other hand, there is a lack of empirical research and assessment of the risk of non-metallic materials (such as liners, seals, gaskets) for classified materials that directly affect the durability and reliability of hydrogen vehicles and hydrogen charging stations. In this study, the risk factors for liners and seals of non-metallic parts used in high-pressure hydrogen installations were derived using FMEA, and the RPN values were calculated by converting the severity, frequency of occurrence and degree of detection into scores. The maximum value of the RPN 600, minimum value 63, average value 278.5 was calculated and periodic control of the liner and seal was identified as important. In addition, through hydrogen soakage and oxygen aging tests for non-metallic rubber products, physical test values that can be used as basic data were presented.

Exploring the Knowledge Structure of Fuel Cell Electric Vehicle in National R&D Projects for the Hydrogen Economy (수소 경제를 위한 국가R&D과제에서 연료전지전기차의 지식구조 탐색)

  • Choi, Jung Woo;Lee, Ji Yeon;Lee, Byeong-Hee;Kim, Tae-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.6
    • /
    • pp.306-317
    • /
    • 2021
  • With a global shift from carbon economy towards hydrogen economy, leading countries such as the U.S., Europe, China, and Japan are focusing their research capabilities on hydrogen research and development(R&D) by announcing various hydrogen economy policies. South Korea also has been following this global trend by announcing hydrogen economy roadmap in January 2019 and legislating hydrogen economy related law. In this paper, we tried to figure out the national R&D trend of Fuel Cell Electric Vehicle(FCEV) and its knowledge structure by using recent 10-year project data of National Technology and Information Service(NTIS). We collected 1,479 FCEV-related projects and conducted text mining and network analysis. According to the analysis, FCEV-related R&D has been actively carried out over the entire process of hydrogen production, transport, storage, and utilization. Furthermore, the paper provides insights into the government's policy agenda building and market strategy on the hydrogen economy.

Identification of Potential Environmental Impacts among Renewable Energy Technologies Promising to Minimize Global Warming (지구온난화 최소화를 위한 신재생 에너지들의 잠재환경영향)

  • Kim, Yong-Bum;Chung, Yong
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.1
    • /
    • pp.67-79
    • /
    • 2008
  • Global warming, which is one of the most serious challenges, has been the subject of intense debate and concern for many scientists, policy-makers, and citizens for at least the past decade. To protect the health and economic well-being of current and future generations, we must reduce our emissions like carbon dioxide. Alternatives to achieve an energy future without serious global warming are to change to clean and renewable sources of energy like the wind, the sun lights, rivers, the biomass, hydrogen, and oceans. To identify some of the key and new environmental impacts associated with renewable energy and hydrogen energy, we set up the new conceptual methodology. Specifically, new identified environmental and health impacts are related with the usage of hydrogen energy. When comparing with fossil fuel, the renewable energies can reduce the release of carbon dioxide when they are used except hydrogen produced from fossil fuel. However, all renewable energy technologies are not appropriate to all applications or locations. Our results suggest that all of alternatives to replace fossil fuel can release the several global and local impacts although they seems to be smaller than the impacts from fossil fuel. Therefore, the quantitative and detail analysis to assess environmental impacts of the alternative energies might be useful to make our decision for the future energy against the global warming.

The Trends of Hydrogen Energy Technology Development and Application to Ship (수소에너지 기술 개발 현황과 선박적용 동향)

  • Han, Won-Hui;Choi, Jung-Sik;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.3
    • /
    • pp.313-320
    • /
    • 2010
  • Hydrogen energy begins to grab the attention as a leading alternative to solve environmental pollution and energy issue. The preparation for the hydrogen energy age is at the primary stage. But it is expected that the utilization of hydrogen energy is a feasible objective through government policy and invigoration of studies in relevant fields of industry. The preparation and research are badly in need to equip a ship with hydrogen energy engine. Some researches on ship with fuel cell are in progress, however, considering a ship that has become larger and it is being operated in special circumstances, the researches on ship with hydrogen energy engine is keenly necessary. And more concerns and supports are required in this regard.

A Numerical Study Of Flow Control Valve to Flow Characteristics by Pressure Difference for Hydrogen Station (수소충전소용 유량제어 밸브의 차압에 따른 유동특성에 대한 수치해석적 연구)

  • Nam, Chung-Woo;Kim, Rak-Min;Kim, Hyun-Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.28-33
    • /
    • 2021
  • With the recent growing interest in eco-friendly cars, as interest in eco-friendly cars increases, interest and purchase of hydrogen fuel cell vehicles that do not emit pollutants are increasing. Recently, the government is supporting the expansion of hydrogen charging station and localization of core parts according to the government's hydrogen energy dissemination policy. In this study, the flow characteristics of the hydrogen flow control valve were investigated. As the differential pressure increases, the mass flow rate and flow coefficient tend to be different from the volume flow rate. And it was confirmed that it affects the hydrogen temperature due to the nozzle effect in the bottleneck section, and the change in density affects the mass flow rate.

An Analysis of the Economy of Scale for Domestic On-site Hydrogen Fueling Stations (국내 분산형 수소충전소의 규모의 경제성 분석)

  • Gim, Bong-Jin;Kim, Jong-Wook
    • Journal of Energy Engineering
    • /
    • v.16 no.4
    • /
    • pp.170-180
    • /
    • 2007
  • This paper deals with the economy of scale for domestic on-site hydrogen stations fueled with natural gas and naptha. We evaluate the economic feasibility of on-site hydrogen stations with hydrogen production capacities of $30Nm^3/hr,\;100Nm^3/hr\;and\;300Nm^3/hr$. We build a classical economic feasibility model and we make some sensitivity analyses by changing the values of input factors such as the hydrogen sale price and the discount rate. The estimated hydrogen prices of steam methane reforming stations with production capacities of $30\;Nm^3/hr,\;100\;Nm^3/hr\;and\;300\;Nm^3/hr$ are 18,472 won/kg, 10,689 won/kg and 7,758 won/kg, respectively. Also, the hydrogen prices are about the same if we use naptha as a raw material for hydrogen energy instead of natural gas. It turns out that small and medium size domestic on-site hydrogen stations will not be economical in the near future. This indicates that we need to construct large scale on-site hydrogen fueling stations even for the initial phase of the hydrogen economy.

Fuel Cell Research Trend Analysis for Major Countries by Keyword-Network Analysis (키워드 네트워크 분석을 통한 주요국 연료전지 분야 연구동향 분석)

  • SON, BUMSUK;HWANG, HANSU;OH, SANGJIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.2
    • /
    • pp.130-141
    • /
    • 2022
  • Due to continuous climate change, greenhouse gases in the atmosphere are gradually accumulating, and various extreme weather events occurring all over the world are a serious threat to human sustainability. Countries around the world are making efforts to convert energy sources from traditional fossil fuels to renewable energy. Hydrogen energy is a clean energy source that exists infinitely on Earth, and can be used in most areas that require energy, such as power generation, transportation, commerce, and household sectors. A fuel cell, a device that produces electric and thermal energy by using hydrogen energy, is a key field to respond to climate change, and major countries around the world are spurring the development of core fuel cell technology. In this paper, research trends in China, the United States, Germany, Japan, and Korea, which have the highest number of papers related to fuel cells, are analyzed through keyword network analysis.