• 제목/요약/키워드: Hydrogen peroxide $(H_2O_2)$

검색결과 925건 처리시간 0.03초

산화적 손상에 대한 키조개(Atrina pectinata) 효소 가수분해물의 간세포 보호 효과 (Cytoprotective Effect of a Neutrase Enzymatic Hydrolysate Derived from Korea Pen Shell Atrina pectinata Against Hydrogen Peroxide -Induced Oxidative Damages in Hepatocytes)

  • 한의정;신은지;김기웅;안긴내;배태진
    • 한국수산과학회지
    • /
    • 제53권1호
    • /
    • pp.123-131
    • /
    • 2020
  • In this study, we investigated the protective effects of a Neutrase enzymatic hydrolysate derived from Korea pen shell Atrina pectinata (APN) against hydrogen peroxide (H2O2)-induced oxidative damage in hepatocytes. First, we confirmed that APN has antioxidant activities by scavenging 2,2-azino-bis (3-ethylbenzthiazoline)-6-sulfonic acid radical (ABTS+) and H2O2 and increasing oxygen radical absorbance capacity (ORAC) value. Also, the treatment of APN increased the cell viability by reducing the intracellular reactive oxygen species (ROS) production in H2O2-stimulated hepatocytes. In addition, APN decreased the sub-G1 DNA contents and the apoptotic body formation increased by H2O2 stimulation. Moreover, APN modulated the protein expression of apoptosis related molecules (Bcl-2, Bax and p53) by suppressing the activation of nuclear factor NFkB and ERK/p38 signaling in H2O2-stimulated hepatocytes. Furthermore, APN led to the activation of Nrf2/HO-1signaling known as antioxidant systems. These results suggest APN protects hepatocytes against oxidative damages caused by H2O2 stimulation.

Effects of Rutaecarpine on Hydrogen Peroxide-Induced Apoptosis in Murine Hepa-1c1c7 Cells

  • Lee, Sung-Jin;Ahn, Hyun-Jin;Nam, Kung-Woo;Kim, Kyeong-Ho;Mar, Woong-Chon
    • Biomolecules & Therapeutics
    • /
    • 제20권5호
    • /
    • pp.487-491
    • /
    • 2012
  • The aim of this study was to investigate the inhibitory effects of rutaecarpine on DNA strand breaks and apoptosis induced by hydrogen peroxide ($H_2O_2$) in murine Hepa-1c1c7 cells. Oxidative DNA damage was estimated by nuclear condensation assessment, fluorescence-activated cell sorting analysis, and Comet assay. Rutaecarpine inhibited cell death induced by $500{\mu}M$ $H_2O_2$, as assessed by 4',6-diamidino-2-phenylindole (DAPI) staining. Treatment with rutaecarpine reduced the number of DNA strand breaks induced by $H_2O_2$, as assessed by DAPI staining and Comet assay, and increased quinone reductase, phosphatidylinositol 3-kinase, and pAkt protein levels, as assessed by western blotting.

Superoxide Dismutase가 배양인체피부멜라닌세포의 산화적 스트레스에 미치는 영향 (Effect of Superoxide Dismutase on Oxidative Stress of Reactive Oxygen Species in Cultured Human Skin Melanocyte)

  • 서영미;김남송
    • 한국산업보건학회지
    • /
    • 제19권3호
    • /
    • pp.261-269
    • /
    • 2009
  • To evaluate the effect of antioxidant on the cytotoxicity induced by oxidative stress of reactive oxygen species (ROS) in cultured human skin melanocytes, colorimeric assay of XTT and tyrosinase activity assay were adopted after human skin melanocytes were preincubated for 2 hours in the media containing various concentrations of superoxide dismutase (SOD) before the treatment of hydrogen peroxide. Light microscopic study was carried out in same cultures. The results of this study were as follows 1. Cell viability of human skin melanocytes was significantly decreased by 30 and $40{\mu}M$ of hydrogen peroxide($H_2O_2$), respectively. 2. XTT50 was determined at $30{\mu}M$ after human skin melanocytes were treated with $10{\sim}40{\mu}M$ of hydrogen peroxide for 6 hours. 3. The cell viability of cultured human skin melanocytes pretreated with SOD was increased than that of cultured human skin melanocytes treated with $H_2O_2$ dose-dependently. 4. In tyrosinase activity of human skin melanocytes, the cell treated with SOD showed brown stain compared with $H_2O_2$ treated cells, dark stain. 5. In light microscopy, cultured human skin melanocytes exposed to $H_2O_2$ showed morphological changes such as the decreased cell number and cytoplasmic processes, compared with control. 6. In light microscopy, cultured human skin melanocytes pretreated with SOD showed the increase of cell number and cytoplasmic processes compared with $H_2O_2-treated$ group. From these results, it is suggested that oxidative stress of ROS such as $H_2O_2$ has cytotoxicity by showing the decreased cell viability, the increased tyrosinase activity and mophological changes of the decreased cell number and cytoplasmic processes. While, antioxidant like SOD was effective in the prevention of oxidative stress-mediated cytotoxicity by the increased cell viability, decreased tyrosinase activity and the protection of degenerative morphological changes in cultured human skin melanocytes.

pH와 첨가제에 의한 이산화염소의 분해율 및 펄프 표백효과(2)-첨가제가 chlorate 생성량의 감소와 펄프 표백 효과에 미치는 영향 (Pulp Bleaching Effect and Ionization Rate of Chlorine Dioxide by Additive and Various pH Conditions (II))

  • 윤병호;왕립군
    • 펄프종이기술
    • /
    • 제31권4호
    • /
    • pp.49-57
    • /
    • 1999
  • In CLO2 delignification and bleaching process, formation of chlorate corresponds to a loss of 20-36% of the original CKO2 charge. Because chlorate is inactive and harmful to environmental, it will be of benefit to find methods that can reduce the formation of chlorate during chlorine dioxide bleaching. Chlorate is mainly formed by the reaction HCIO +ClO2 $\longrightarrow$H+ + Cl_ +ClO3-2 On the other hand, AOX in chlorine dioxide bleacing is formed also due to the in-situ produced hypochlorous acid. THus both AOX and chlorate could be reduced by addition of hypochlorous acid. Some paper son the reduction of AOX by additives appeared , but systematic data on chlorate reduction as well as pulp and effluent properties are not available. THus this paper of focused on the effects on the reduction of chlorate and chlorine dioxide bleachability. The additives, fulfamic a챵, AMSO, hydrogen peroxide, oxalic acid were found to eliminate chlorine selectively in chlorine and chlorine dioxide mixture.However, when they were added to bleaching process, sulfamic acid and DMSO showed significant reduction of chlorate formation but hydrogen peroxide and oxalic aicd did not, and significant amount ofhydrogen peroxide was found resided in the bleaching effluent , In addition, sulfamic acid and DMSO decreased the bleaching end ph values while hydrogen peroxide and oxalic acid did not, which also indicated that hydrogen peroxide and oxalic acid were ineffective. The difference might be ascribed to the competitives of hypochlorous acid with lignin, chlorite (CKO2) and additives. Sulfamic acid and DMSO showed better pulpbrightness development but less alkaline extraction efficiency than hydrogen peroxide , oxalic acid and control, which means that insitu hypochlorous acid contributes to the formation of new chromophore structures that can be easily eliminated by alkaline extraction. DMSO decreased the delignification ability of chlorine dioxide due to the elimination of hypochlorous acid, but sfulfamic acid did to because the chlroinated sulfamic acid had stable bleachability. In addition, sulfamic acid, and SMSO shwed decreased color and COD of bleaching effluents, hydrogen peroxide decreased effluent color but not COD content, and oxalic acid had no statistically significant effects. No significant decreases of pulp viocosity were found except for hydrogen peroxide. Based on our results , we suggest that the effectiveness of hydrogen peroxide on the reduction of AOX in literature might be explained by other mechanisms not due to the elimination of hypochlorous acid , but to the direct decomposition of AOX by hydrogen peroxide.

  • PDF

The Rapid and Efficient Synthesis of Bromohydrins from Olefins under HBr/H2O2 System by Visible Light Induced

  • Tang, Rui-Ren;Gong, Nian-Hua
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권8호
    • /
    • pp.1832-1834
    • /
    • 2009
  • A simple and safe method has been presented for conversion of olefins into bromohydrins using hydrogen bromide and hydrogen peroxide as bromide source by visible light induced within a very short time to get high yield bromohydrins along with a little mount dibromo-product. In this paper, cyclohexene is firstly carried out as the model substrate and investigated the bromination under HBr/$H_2O_2$ system using 150 W incandescent light irradiated in C$Cl_4$ within short time to get good yield of 2-bromocyclohexanol along with a little mount of 1,2-dibromocyclohexane; then, a series of alkenes are brominated to corresponding bromohydrins using the same protocol.

서울시 대기중의 과산화수소 농도의 계절적 변화 (Seasonal variation of hydrogen peroxide in Seoul)

  • 김주애;김영미;박정후;이미혜
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2003년도 춘계학술대회 논문집
    • /
    • pp.231-232
    • /
    • 2003
  • 과산화수소(hydrogen peroxide, $H_2O$$_2$)는 광화학적 2차 생성물이며, 대기의 산화상태를 알려주는 지시자의 역할을 한다. 과산화수소는 HO$_2$ radical의 self-reaction 으로 생성된다. HO$_2$+ HO$_2$+ M $H_2O$$_2$ + M (1) OH나 HO$_2$ radical은 NOx나 hydrocarbon 과 같은 대표적인 오존 전구물질들을 산화시킨다. 대기 내 수명이 불과 1초 이내인 OH나 HO$_2$ radical을 직접 측정하기란 어려우므로 수명이 1~2 일 정도인 $H_2O$$_2$를 측정하여 이들 radical의 대기 내 농도를 추정할 수 있다. (중략)

  • PDF

서울시 겨울철 과산화수소 측정 (Measurement of hydrogen peroxide in Seoul during winter)

  • 김영미;이미혜
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2002년도 춘계학술대회 논문집
    • /
    • pp.95-96
    • /
    • 2002
  • 과산화수소(hydrogen peroxide, $H_2O$$_2$)는 광화학적 이차 생성물이며, 대기의 산화상태를 알려주는 지시자의 역할을 한다 과산화수소는 HO$_2$ 라디칼의 self-reaction 으로 생성된다. HO$_2$+HO$_2$+ M$\longrightarrow$$H_2O$$_2$+M, OH나 HO$_2$ 라디칼은 NOx나 hydrocarbon 과 같은 대표적인 오존 전구물질들을 산화시킨다. 대기 내수명이 불과 1초 이내인 OH나 HO$_2$ 라디칼을 직접 측정하기란 어려우며 수명이 1-2 일 정도인 $H_2O$$_2$를 측정하므로써 이들 라디칼의 대기 내 농도를 예측 할 수 있다. (중략)

  • PDF

인삼엽요병에서 Active Oxygen Species (^1O_2, O_2^-, H_2O_2$)가 Chlorophyll Bleaching에 미치는 영향 및 방제대책에 관한 연구 (Effects Of Active Okygen Species (^1O_2, O_2^-, H_2O_2$) and Scavengers on the Chlorophyll Bleaching of Leaf-Burning Disease from Panax ginseng C.A. Meyer)

  • 양덕조;김명원;채쾌;김명식
    • Journal of Ginseng Research
    • /
    • 제13권1호
    • /
    • pp.98-104
    • /
    • 1989
  • In order to determine the specific active oxygen species directly related to chlorophyll bleaching in the leaf-burning disease, we investigated the effects of singlet oxygen (1O2), superoxide radical (O2-), and hydrogen Peroxide (H2O2) on isolated chloroplast suspension and leaf discs from Panax ginseng C.A. Meyer. When the singlet oxygen was added to the chloroplast suspension, the chlorophyll and carotenoid contents were decreased by more than 809), similar to treatment with high light intensity (100 KLux). We assumed that the conversion of dioxygen (O2) produced either in photolysis or in breakdown of hydrogen peroxide to singlet oxygen resulted from photorespiration. On the basis of these experiments , :he inhibitory effects of active oxygen scavengers propylgallic acid (PGA), 2,5-ditetrabutyl hydroquinon (DBH), sodium pyrosulfate (SPS), and ascorbic acid (ABS) were examined. In chloroplast suspension all four scavengers inhibited chlorophyll bleaching by more than 75fl , and in the leaf discs the inhibition rates of SPS, PGA and ABS were 46%, 51%, and 96% respectively.

  • PDF

Aromatization of 1,3,5-Trisubstituted of 4,5-Dihydro-1H-Pyrazoles by In-Situ Generation of I+ from Hydrogen Peroxide/Acids/Iodide Potassium or Sodium Systems

  • Maleki, Behrooz;Veisi, Hojat
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권12호
    • /
    • pp.4366-4370
    • /
    • 2011
  • A simple, green and cost-effective protocol was used for the aromatization of 1,3,5-trisubstituted-2-pyrazolines to the corresponding pyrazoles by in situ generation of iodine ($I^+$) from $H_2O_2$/AcOH or SSA or oxalic acid /KI or NaI system under thermal condition with moderate to good yields.

Electro-Fenton 반응을 이용한 유독성 유기화합물 처리 (Removal of Toxic Organic Compound using Electro-Fenton Reaction)

  • 박상원
    • 한국환경과학회지
    • /
    • 제13권6호
    • /
    • pp.551-560
    • /
    • 2004
  • The feasibility and efficiency of the hydrogen peroxide produced by an electrolysis cell reactor was investigated, From regulating voltages for the given reaction time, the concentration of the hydrogen peroxide was gradually increased with increasing voltages. Optimal voltage range was found to be 10~15 V. The concentration of hydrogen peroxide was much higher with oxygen gas than without oxygen gas in the cathodic chamber. But there was a little difference in the generating rate of hydrogen peroxide regardless of the presence of nitrogen gas. Under given conditions, the maximum value of ICE(Instantaneous Current Efficiency) was about 38%, and then current density was 74 $mA/\textrm{cm}^2.$ The specific energy consumption was $0.694[kWh/kg-H_2O_2].$ Since Esp (Specific Energy Consumption)was very little value, It did not demand high energy in this system. Using the hydrogen peroxide gained in the experiment, Fenton's reaction was conducted and the removal of nitrobenzene, 3-chlorophenol and dye wastewater was studied. This results were very similar to the Fenton's reaction by using commercial hydrogen peroxide.