• Title/Summary/Keyword: Hydrogen peroxide($H_{2}O_{2}$)

Search Result 938, Processing Time 0.028 seconds

Effect of Cadmium on Oxidative Stress and Activities of Antioxidant Enzymes in Tomato Seedlings

  • Cho, Un-Haing;Kim, In-Taek
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.115-121
    • /
    • 2003
  • Leaves of two-week old seedlings of tomato (Lycopersicon esculentum) were treated with various concentrations (0∼100 M) of $CdCl_2$ for up to 9 days and subsequent growth of seedlings, symptoms of oxidative stress and isozyme activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POX) were investigated. Compared with the non-treated control, Cd exposure decreased biomass but increased Cd accumulation, hydrogen peroxide production and lipid peroxidation as malondialdehyde (MDA) formation in leaves and roots. Further studies on the developmental changes of isozyme activities showed that Fe-SOD, Cu/Zn-SOD and one of three APX isozymes decreased and CAT and one of four POX isozymes increased in leaves, whereas Fe-SOD, one of three POX isozymes and two of four APX isozymes decreased and CAT increased in roots, showing different expression of isozymes in leaves and roots with Cd exposure level and time. Based on our results, we suggest that the reduction of seedling growth by Cd exposure is the oxidative stress resulting from the over production of $H_2O_2$ and the insufficient activities of antioxidant enzymes particularly involved in the scavenging of $H_2O_2$. Further, the decreased activities of SOD and APX isozymes of chloroplast origin, the increased activities of CAT and POX and high $H_2O_2$ contents with Cd exposure might indicate that Cd-induced oxidative stress starts outside chloroplast.

Manganese Oxide Catalyzed Fenton-like Reduction of Chlorinated Compounds (산화망간으로 촉매화된 펜톤유사반응을 적용한 염소계화합물의 환원분해)

  • 김상민;공성호;김용수
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.95-102
    • /
    • 2002
  • Manganese oxide/ hydrogen peroxide($MnO_2$/${H_2}{O_2}$) reactions were investigated as an alternative to Fenton-like reaction to reduce chlorinated organic compounds in groundwater This system showed high degradation of CT with low ${H_2}{O_2}$concentration($\leq$294mM) at neutral condition, and CT degradation increased with increasing pH values. The rate of CT degradation was not so much dependent on increase in $MnO_2$concentration since increase in production of oxygen during the reaction obstructed reaction of ${H_2}{O_2}$ on the surface of $MnO_2$. These results show that $MnO_2$catalyzed Ponton-like reaction could be a potential alternative method for treating chlorinated organic compounds in groundwater.

Protective effect of Socheongryong-Tang on hydrogen peroxide-induced hepatotoxicity (소청룡탕(小靑龍湯)의 과산화수소로 유도된 간세포 독성에 대한 보호효과)

  • Lee, Ji-Seon;Oh, Su-Young;Seo, Sang-Hee;Kim, Tae-Soo;Ma, Jin-Yeul
    • The Korea Journal of Herbology
    • /
    • v.26 no.4
    • /
    • pp.133-137
    • /
    • 2011
  • Objectives : Socheongryong-Tang (小靑龍湯, SCRT) has been widely used to treat respiratory disease. In this study, we investigated the protective effects of SCRT on hydrogen peroxide-induced hepatotoxicity. Methods : In the mouse primary liver cells, SCRT was pretreated for 1 h, and 1 mM $H_2O_2$ was treated to mouse primary liver cells. Cell viability was analyzed by using 3- 4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT) assay. Also, the activity of AST, ALT and LDH were measured for the evaluation the protective effect of SCRT on $H_2O_2$-induced hepatotoxicity. Intracellular ROS level was analyzed by FACS. Results : SCRT pretreatment decreased $H_2O_2$-induced hepatotoxicity and intracellular ROS production. Pretreatment of SCRT significantly reduced the cytotoxic effect induced by $H_2O_2$, associated with reducing DNA fragmentation and AST, ALT, LDH activities. Conclusions : These results suggest that SCRT has protective effect against $H_2O_2$-induced hepatotoxicity.

Development and Verification Test of a Bi-propellant Thruster Using Hydrogen Peroxide and Kerosene

  • Yu, I Sang;Kim, Tae Woan;Ko, Young Sung;Jeon, Jun Su;Kim, Sun Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.270-278
    • /
    • 2017
  • This paper describes development procedure and verification test results of a bi-propellant thruster using hydrogen peroxide and kerosene. The design thrust of the thruster is about 500 N and six swirl type coaxial injectors were used. The passage type manifolds were employed for the injector head to reduce the response time. The passage was designed to minimize stagnation points and recirculation region to ensure uniform flow distribution and sufficient cooling performance through flow analysis using Fluent. A catalytic igniter using hydrogen peroxide was installed at the center of the injector head. The propellant feeding and spray characteristics were confirmed by hydraulic tests. Combustion tests were performed on design and off-design points to analyze combustion characteristics under various mixture ratio conditions. The combustion test results show that combustion efficiency was over 95 % and chamber pressure fluctuation were less than 1.5 % under all test conditions.

Decontamination of Interior of Field Tent Employed Geobacillus stearothermophilus Spores using a Hydrogen Peroxide Vapor System (과산화수소증기 시스템을 이용한 야전용 천막 내 Geobacillus stearothermophilus 아포 제독)

  • Yoon, Sung Nyo;Kim, Yun Ki;Jeung, Jeung Hoon;Yoo, Hyun Sang;Min, Kyung Yool;Kim, Min Cheol;Kim, Se Kye;Ryu, Sam Gon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.669-674
    • /
    • 2016
  • The purpose of this study is to demonstrate the suitability of hydrogen peroxide($H_2O_2$) vapor system for platform interior decontamination. Geobacillus stearothermophilus biological indicator(BI) strips and a field tent were used as a biological simulant and as a simulated platform, respectively. Decontamination was performed based on injection rates and tent sizes with exposure time 60 minutes. We standardized the conditions for the field tent decontamination : 8.0 g/min for $30m^3$($H_2O_2$ vapor concentration of 150~500 ppm, relative humidity of 50 %) and 12.0 g/min for $60m^3$($H_2O_2$ vapor concentration of 250~400 ppm, relative humidity of 55 %). Thus we suggest the system is one of the possible candidates for decontamination of platform interiors.

Enhanced Biodegradation of Total Petroleum Hydrocarbons (TPHs) in Contaminated Soil using Biocatalyst

  • Owen, Jeffrey S.;Pyo, Sunyeon;Kang, Guyoung
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.5
    • /
    • pp.47-51
    • /
    • 2015
  • Biocatalytic degradation of total petroleum hydrocarbons (TPHs) in contaminated soil by hemoglobin and hydrogen peroxide is an effective soil remediation method. This study used a laboratory soil reactor experiment to evaluate the effectiveness of a nonspecific biocatalytic reaction with hemoglobin and H2O2 for treating TPH-contaminated soil. We also quantified changes in the soil microbial community using real-time PCR analysis during the experimental treatment. The results show that the measured rate constant for the reaction with added hemoglobin was 0.051/day, about 3.5 times higher than the constant for the reaction with only H2O2 (0.014/day). After four weeks of treatment, 76% of the initial soil TPH concentration was removed with hemoglobin and hydrogen peroxide treatment. The removal of initial soil TPH concentration was 26% when only hydrogen peroxide was used. The soil microbial community, based on 16S rRNA gene copy number, was higher (7.1 × 106 copy number/g of bacteria, and 7.4 × 105 copy number/g of Archaea, respectively) in the hemoglobin catalyzed treatment. Our results show that TPH treatment in contaminated soil using hemoglobin catalyzed oxidation led to the enhanced removal effectiveness and was non-toxic to the native soil microbial community in the initial soil.

Evaluation of Effective Process Operation for the Texitile Dyeing Wastewater by Ferrous Solution and Hydrogen Peroxide

  • Lee, Sang Ho;Moon, Hey Jin
    • Journal of Environmental Science International
    • /
    • v.13 no.11
    • /
    • pp.987-991
    • /
    • 2004
  • The purpose of this research is to evaluate the removal efficiencies of COD$\_$Cr/ and color for the dyeing wastewater by the different dosages of ferrous solution and H$_2$O$_2$ in Fenton process. In the case of H$_2$O$_2$ divided dosage for the Fenton's reagent 7:3 of H$_2$O$_2$ was more effective than 3:7 to remove COD$\_$Cr/ and color. The results showed that COD$\_$Cr/ was mainly removed by Fenton coagulation, where the ferric ions are formed in the initial step of Fenton reaction. On the other hand color was removed by Fenton oxidation rather than Fenton coagulation. The removal mechanism of COD$\_$Cr/ and color was mainly coagulation by ferrous ion, ferric ion and Fenton oxidation. The removal efficiencies were dependent on the ferric ion amount at the beginning of the reaction. However, the final removal efficiency of COD$\_$Cr/ and color was in the order of Fenton oxidation, ferric ion coagulation and ferrous ion coagulation. The reason of the highest removal efficiency by Fenton oxidation can be explained by the chain reactions with ferrous solution, ferric ion and hydrogen peroxide.

A Study of Design of $H_2O_2$/Kerosene Ignition Injector and Spray Characteristics (과산화수소/케로신 점화용 분사기 설계 및 분무특성에 관한 연구)

  • Kim, Bo-Yeon;Hwang, Oh-Sik;Lee, Yang-Suk;Ko, Young-Seong;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.37-40
    • /
    • 2009
  • This study was performed to design of $H_2O_2$/Kerosene catalyst ignition injector and cold flow test to measure the mass flow rate and spray angle. Mass flow rate and spray angle were measured by designed injector through cold flow test. Result of test kerosene mass flow rate was measured 12.88 g/s and 40 deg of spray angle at pressure drop 3 bar as same as design point. And hydrogen peroxide was measured 94.39 g/s at pressure drop 1 bar smaller than design point.

  • PDF

Influence of DBD Plasma Exposure on Normal and Cancer Cells Activity

  • Panngom, Kamonporn;Baik, Ku-Youn;Ryu, Young-Huo;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.172-172
    • /
    • 2012
  • Non-thermal plasma has attracted medical researchers, since they showed higher apoptosis rate in cancer cells than normal cells. However, it is hard to conclude general cancer cell specific effect because comparison between normal and cancer cell activities after plasma treatment have not been reported yet. This research proposes a comparison of Dielectric Barrier Discharge (DBD) plasma effect on three normal cells lines and three cancer cells lines. We measured cell number, mitochondria activity (MTS assay) and amount of hydrogen peroxide (H2O2) for three days. The results show that the number of cancer cells decreased more than normal cells following of exposure time. On the other hand, mitochondria activities and amounts of H2O2 increased following of exposure time. In addition, we found that DBD plasma exposure on cell suspension in media and media only illustrated no difference in mitochondria activity, H2O2 quantity, and cell number. Thus, we can confirm higher apoptosis rate in cancer cells which is related to the reactive oxygen species (ROS) generated by DBD plasma. The related molecular mechanisms were investigated further.

  • PDF

Luteolin inhibits H2O2-induced cellular senescence via modulation of SIRT1 and p53

  • Zhu, Ri Zhe;Li, Bing Si;Gao, Shang Shang;Seo, Jae Ho;Choi, Byung-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.4
    • /
    • pp.297-305
    • /
    • 2021
  • Luteolin, a sort of flavonoid, has been reported to be involved in neuroprotective function via suppression of neuroinflammation. In this study, we investigated the protective effect of luteolin against oxidative stress-induced cellular senescence and its molecular mechanism using hydrogen peroxide (H2O2)-induced cellular senescence model in House Ear Institute-Organ of Corti 1 cells (HEI-OC1). Our results showed that luteolin attenuated senescent phenotypes including alterations of morphology, cell proliferation, senescence-associated 𝛽-galactosidase expression, DNA damage, as well as related molecules expression such as p53 and p21 in the oxidant challenged model. Interestingly, we found that luteolin induces expression of sirtuin 1 in dose- and time-dependent manners and it has protective role against H2O2-induced cellular senescence by upregulation of sirtuin 1 (SIRT1). In contrast, the inhibitory effect of luteolin on cellular senescence under oxidative stress was abolished by silencing of SIRT1. This study indicates that luteolin effectively protects against oxidative stress-induced cellular senescence through p53 and SIRT1. These results suggest that luteolin possesses therapeutic potentials against age-related hearing loss that are induced by oxidative stress.