• 제목/요약/키워드: Hydrogen oxidation

검색결과 741건 처리시간 0.03초

Evaluation of Effective Process Operation for the Texitile Dyeing Wastewater by Ferrous Solution and Hydrogen Peroxide

  • Lee, Sang Ho;Moon, Hey Jin
    • 한국환경과학회지
    • /
    • 제13권11호
    • /
    • pp.987-991
    • /
    • 2004
  • The purpose of this research is to evaluate the removal efficiencies of COD$\_$Cr/ and color for the dyeing wastewater by the different dosages of ferrous solution and H$_2$O$_2$ in Fenton process. In the case of H$_2$O$_2$ divided dosage for the Fenton's reagent 7:3 of H$_2$O$_2$ was more effective than 3:7 to remove COD$\_$Cr/ and color. The results showed that COD$\_$Cr/ was mainly removed by Fenton coagulation, where the ferric ions are formed in the initial step of Fenton reaction. On the other hand color was removed by Fenton oxidation rather than Fenton coagulation. The removal mechanism of COD$\_$Cr/ and color was mainly coagulation by ferrous ion, ferric ion and Fenton oxidation. The removal efficiencies were dependent on the ferric ion amount at the beginning of the reaction. However, the final removal efficiency of COD$\_$Cr/ and color was in the order of Fenton oxidation, ferric ion coagulation and ferrous ion coagulation. The reason of the highest removal efficiency by Fenton oxidation can be explained by the chain reactions with ferrous solution, ferric ion and hydrogen peroxide.

디젤-분무 수소-공기 확산화염에서 생성된 철-함유 탄소입자의 촉매 산화반응 특성 (Catalytic oxidation kinetics of iron-containing carbon particles generated from diesel-sprayed hydrogen-air diffusion flame)

  • 김용호;김용태;김수형;이동근
    • 한국입자에어로졸학회지
    • /
    • 제4권2호
    • /
    • pp.51-67
    • /
    • 2008
  • In this study, we devoted to kinetic measurement of the catalytic oxidation of iron-containing flame soot particles and better understanding the role of catalytic particles on carbon oxidation in particular at low temperature, targeting on autothermal regeneration of diesel particulate filter by diesel exhaust gas. Carbon-based Fe-containing particles generated by spraying ferrocene-doped diesel fuel in an oxy-hydrogen flame are tested and compared with a commercial carbon black powder for thermogravimetric analysis (TGA), secondary ion mass spectrometry (SIMS), Fourier-transform infrared spectroscopy (FTIR), Induced coupled plasma-Atomic emission spectroscopy (ICP-AES), and High-resolution transmission electron microscopy (HR-TEM). As a result, we found that a small amount of the ferrocene addition led to significant reductions in a on-set temperature and an activation energy of the carbon oxidation as well. An oxygenated surface complex forming at the particle surface could be thought as active species that would be readily consumed in particular at low temperature.

  • PDF

Effect of the Saponin Fraction of Korean Ginseng on the Ethanol Metabolism in the Animal Body

  • Joo, Chung-No;Kwak, Hahn-Shik
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1987년도 Proceedings of Korea-Japan Panax Ginseng Symposium 1987 Seoul Korea
    • /
    • pp.47-58
    • /
    • 1987
  • Ethanol exerts different effects on hepatic cellular metabolism, depending mainly on the duration of its intake. In the presence of ethanol following an acute load, a number of hepatic functions are inhibited, including lipid oxidation and microsomal drug metabolism. In its early stages, chronic ethanol consumption produces adaptive metabolic changes in the endoplasmic reticulum which result in increased metabolism of ethanol and drugs and accelerated lipoprotein production. Prolongation of ethanol intake may result in injurious hepatic lesions such as alcoholic hepatitis and cirrhosis A number of such metabolic effects of ethanol are directly linked to the two major products of its oxidation; hydrogen and acetaldehyde. The excess hydrogen from ethanol unbalances the liver cell's chemistry. In the presence of excess hydrogen ions the process is turned in a different direction. In this study, it was attempted to observe the effect of ginseng saponins on alcohol Oehydrogenase(ADH), aldehyde dehydrogenase(ALDH) and microsomal ethanol oxidizing system(MEOS) in vivo as well as in vitro. Furthermore, the effect of ginseng saponin on the hydrogen balance in the liver and the hepatic cellular distribution of (1-14C) ethanol, its incorporation into acetaldehyde and lipids was also investigated. It seemed that ginseng saponin stimulated the above enzymes and other related enzymes in ethanol metabolism, resulting in a rapid removal of acetaldehyde and excess hydrogen from the animal body,

  • PDF

수냉식 방열을 이용한 연료전지용 PROX 반응기의 성능에 관한 실험적 연구 (Experimental Study on the Preferential Oxidation Reactor Performance Using a Water Cooling Heat Removal for Polymer Electrolyte Membrane Fuel Cell)

  • 김진산;조태현;구본찬;이도형
    • 한국수소및신에너지학회논문집
    • /
    • 제27권5호
    • /
    • pp.503-509
    • /
    • 2016
  • Fuel cell is a device for producing electricity by using the hydrogen produced by the fuel processor. At this time, CO is also created by the fuel processor. The resulting CO enters the stack where is produce electricity and leads to the adsorption of anode catalyst, finally the CO poisoning occurs. Stack which occurred CO poisoning has a reduction in performance and shelf life are gradually fall because they do not respond to hydrogen. In this paper, experiments that using a PROX reactor to prevent CO poisoning were carried out for removing the CO concentration to less than 10ppm range available in the fuel cell. Furthermore experiments by the PROX reaction was designed and manufactured with a water-cooling heat exchange reactor to maintain a suitable temperature control due to the strong exothermic reaction.

마이크로버블 오존 산화제와 공압파쇄 장치를 연계 적용한 지중 화학적 산화법의 정화효율 평가 (Evaluation of Remediation Efficiency of In-Situ Chemical Oxidation Technology Applying Micro Bubble Ozone Oxidizer Coupled with Pneumatic Fracturing Equipment)

  • 오승택;오참뜻;김국진;석소희;김철경;임진환;유재봉;장윤영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권4호
    • /
    • pp.44-50
    • /
    • 2012
  • A new type of chemical oxidation technology utilizing micro bubble ozone oxidizer and a pneumatic fracturing equipment was developed to enhance field applicability of a traditional chemical oxidation technology using hydrogen peroxide as an oxidizer for in-situ soil remediation. To find an efficient way to dissolve gaseous ozone into hydrogen peroxide, ozone was injected into water as micro bubble form then dissolved ozone concentration and its duration time were measured compared to those of simple aeration of gaseous ozone. As a result, dissolved ozone concentration in water increased by 31% (1.6 ppm ${\rightarrow}$ 2.1 ppm) and elapsed time for which maximum ozone concentration decreased by half lengthened from 9 min to 33 min. When the developed pneumatic fracturing technology was applied in sandy loam, cracks were developed and grown in soil for 5~30 seconds so that the radius of influence got longer by 71% from 392 cm to 671 cm. The remediation system using the micro bubble ozone oxidizer and the pneumatic fracturing equipment for field application was made and demonstrated its remediation efficiency at petroleum contaminated site. The system showed enhanced remediation capacity than the traditional chemical oxidation technology using hydrogen peroxide with reduced remediation time by about 33%.

연속흐름식 반응기를 이용한 TiO2/H2O2/UV에 의한 클로로페놀 제거(除去)에 관한 실험적(實驗的) 연구(硏究) (An Experimental Study on the Removal of Chlorophenol by TiO2/H2O2/UV Using Continuous flow Reactor)

  • 이상협;박주석;박중현;김동하
    • 상하수도학회지
    • /
    • 제12권3호
    • /
    • pp.55-64
    • /
    • 1998
  • The degradation efficiency of chlorophenolic compounds in $TiO_2/H_2O_2$ combined system was compared with that of in $TiO_2$ sole system. As a result, the addition of hydrogen peroxide in photocatalytic oxidation reaction greatly enhanced the degradation efficiency of chlorophenolic compounds due to the availability of the hydroxyl radical formed on the $TiO_2$ surface. The hydrogen peroxide under UV illumination produces hydroxyl radicals that appear to be another source of hydroxyl radical formation. These results indicated the $TiO_2/H_2O_2$ combined system shows higher degradation efficiency than the $TiO_2$ sole system. Compared to another oxidation reaction, hydrogen peroxide assisted photocatalytic oxidation is more promising in practical aspect.

  • PDF

고온호기산화법으로 처리된 양돈분뇨 배출액의 무취화 관리방안에 관한 기초 연구 (Basic Studies on Deodorization Management of the Efflux From Swine Slurry Treated by the Thermophilic Aerobic Oxidation(TAO) Reactor)

  • 이명규;허재숙;태민호;정진영;권오중
    • 한국축산시설환경학회지
    • /
    • 제5권2호
    • /
    • pp.123-132
    • /
    • 1999
  • This study was carried out to find deodorization management method of the efflux from swine slurry treated by thermophilic aerobic oxidation reactor. Three kinds of deodorization methods in Lab-scale reactors, were used in this experiment; No treatment, air injection treatment(50$m\ell$ air/min. $\ell$) and inoculumn of photrophic bacteria treatement(108 cell(Most probable number, MPN)/$m\ell$). The concentration of volatile fatty acids(VFAs), hydrogen sulfide(H2S), and ammonia(NH3) were analyzed during the treatment period(50 days). The major results obtained as follows. 1. Air injection method to efflux showed very high removal effect on malodorants such as VFAs, hydrogen sulfide(H2B). But ammonia(NH3) was emitted to much. 2. PTB inoculum method was also effective in removal of malodorants, VFAs, Hydrogen sulfide(H2S), when it was applied to the efflux. 3. We found that the concentrations of malodorants, VFAs, H2S, NH3 had some relatinships with the pH, ORP, BOD in the efflux.

가압순산소 연소 조건에서 균일 CO/H2/NO의 화학적 특성에 관한 해석 연구 (Numerical Analysis of Chemical Characteristics of Homogeneous CO/H2/NO in Pressurized Oxy-Fuel Combustion)

  • 김동희;안형준;허강열;이영재
    • 한국수소및신에너지학회논문집
    • /
    • 제30권4호
    • /
    • pp.320-329
    • /
    • 2019
  • This study was performed by the numerical approach to investigate chemical behaviors of homogeneous syngas ($CO/H_2$) with nitric monoxide (NO) in pressurized oxy-fuel conditions. Hydrogen had a dominant effect to the ignition delay time of syngas due to the fast chemistry of its oxidation. Combustion was promoted by NO at the low temperature region. It was by the additional heat release through NO oxidation and production and consumption of major radicals related to the ignition. Two stage ignition behavior was shown in the pressurized condition by the accumulation of $H_2O_2$ produced from $HO_2$ radical. Additional NO oxidation was induced by the pressurized oxy-fuel condition to produce $NO_2$.

붕산수용액 매질에서 용존수소와 과산화수소의 고온 전기화학 거동연구 (Electrochemical Behavior of Dissolved Hydrogen and Hydrogen Peroxide in Boric Acid Solution at the Elevated Temperature)

  • 연제원;우승균;최영구;정용주;김원호
    • 전기화학회지
    • /
    • 제7권1호
    • /
    • pp.21-25
    • /
    • 2004
  • 용존수소와 과산화수소의 전기화학 거동을 백금 디스크 전극을 사용하여 정전위 분극법으로 $25^{\circ}C$$200^{\circ}C$붕산수용액에서 측정하였다. $25^{\circ}C$에서 용존수소의 산화반응은 전극표면에서의 전자전달속도에 의존하는 반응속도론적 지배반응이었다. 그러나 온도가 올라감에 따라 용존수소의 전기화학 거동은 반응속도론적 지배반응에서 확산지배반응으로 변하였다. 고온 용존수소 조건에서 한 가지 주목할 만한 사실은 물의 산화가 시작되는 직전 전위에서 용존수소의 산화반응이 급격히 줄어드는 특이한 전위영역이 관찰되었다는 점이다. 이 현상은 백금 전극표면에 수산화이온의 흡착에 기인한 것으로 생각된다. 반면에 과산화수소의 경우. 온도가 증가함에 따라 증가하는 확산계수로 인한 전류밀도의 증가를 제외하고는 온도에 따른 전극반응의 명백한 변화는 보이지 않았다.

Fe-EDTA계 액상촉매 산화법에 의한 분뇨처리장 악취제거에 관한 연구 (Studies on the Deodorization in the Nightsoil Treatment Plant with liquid Phase Catalytic Oxidation Method by Utilization of Fe-EDTA)

  • 이인화
    • 한국환경과학회지
    • /
    • 제1권2호
    • /
    • pp.105.1-113
    • /
    • 1992
  • The present study was performed to develop the removal system of the offensive gases, including hydrogen sulfide of acid gas, ammonia or amice of base gas, from the nightsoil treatment plant. In order to remove the offensive gases, the Fe-EDTA system liquid phase catalytic oxidation method with the bubble lift column reactor was employed. From the results obtained, it was confirmed that the offensive gases can be deodorized simultaneously and also hydrogen sulfide of acid gas, ammonia of base gas completely removed at pH 6.45. In addition, as input gases feed rate the efficiency of acid gas did not change but the efficiency of base gases decreased to approximately 90 % at pH 6, 0. From the result of particle size analyzer, it was found that the particle sizes including sulfur and other impurites grew up to $21{\mu}m$ over 72hour reaction time.

  • PDF