DOI QR코드

DOI QR Code

Electrochemical Behavior of Dissolved Hydrogen and Hydrogen Peroxide in Boric Acid Solution at the Elevated Temperature

붕산수용액 매질에서 용존수소와 과산화수소의 고온 전기화학 거동연구

  • Yeon Jei-Won (Korea Atomic Energy Research Institute, Nuclear Chemistry Research Division) ;
  • Woo Seung-Kyun (Korea Atomic Energy Research Institute, Nuclear Chemistry Research Division) ;
  • Choi Young-Ku (Korea Atomic Energy Research Institute, Nuclear Chemistry Research Division) ;
  • Jung Yongju (Korea Atomic Energy Research Institute, Nuclear Chemistry Research Division) ;
  • Kim Won-Ho (Korea Atomic Energy Research Institute, Nuclear Chemistry Research Division)
  • 연제원 (한국원자력연구소 원자력화학연구부) ;
  • 우승균 (한국원자력연구소 원자력화학연구부) ;
  • 최영구 (한국원자력연구소 원자력화학연구부) ;
  • 정용주 (한국원자력연구소 원자력화학연구부) ;
  • 김원호 (한국원자력연구소 원자력화학연구부)
  • Published : 2004.02.01

Abstract

The electrochemical behaviors of dissolved hydrogen and hydrogen peroxide at a platinum disk electrode were investigated in boric acid solution by potentiostatic polarization method at the temperature of 25 and $200^{\circ}C$. The oxidation of dissolved hydrogen at $25^{\circ}C$ was kinetically controlled reaction, the rate of which depends upon the electron transfer on the electrode surface. As temperature was raised, however, the electrochemical characteristics of dissolved hydrogen were changed from a kinetically controlled reaction to a diffusion controlled one. One notable feature, with dissolved hydrogen at high temperature, is that an abnormal potential range was observed, where the oxidation rate of dissolved hydrogen rapidly decreased just before starting potential of water oxidation. We think it is caused by the deactivation of the electrode that results from the adsorption of hydroxyl ion on the surface of the platinum disk. On the contrary, a definite change with temperature was not identified in the case of the hydrogen peroxide except for the increase in current density that was due to the increasing diffusion coefcient with an increase of temperature.

용존수소와 과산화수소의 전기화학 거동을 백금 디스크 전극을 사용하여 정전위 분극법으로 $25^{\circ}C$$200^{\circ}C$붕산수용액에서 측정하였다. $25^{\circ}C$에서 용존수소의 산화반응은 전극표면에서의 전자전달속도에 의존하는 반응속도론적 지배반응이었다. 그러나 온도가 올라감에 따라 용존수소의 전기화학 거동은 반응속도론적 지배반응에서 확산지배반응으로 변하였다. 고온 용존수소 조건에서 한 가지 주목할 만한 사실은 물의 산화가 시작되는 직전 전위에서 용존수소의 산화반응이 급격히 줄어드는 특이한 전위영역이 관찰되었다는 점이다. 이 현상은 백금 전극표면에 수산화이온의 흡착에 기인한 것으로 생각된다. 반면에 과산화수소의 경우. 온도가 증가함에 따라 증가하는 확산계수로 인한 전류밀도의 증가를 제외하고는 온도에 따른 전극반응의 명백한 변화는 보이지 않았다.

Keywords

References

  1. X. Xu, D. Wu, B. Ren, H. Xian, and Z. Tian, Chemical Physics Letters, 311, 193 (1999) https://doi.org/10.1016/S0009-2614(99)00856-8
  2. A. Zielinski, Journal of Materials Processing Technology, 109, 206 (2001) https://doi.org/10.1016/S0924-0136(00)00797-4
  3. F. King, M. Quinn, and C. Litke, J Electroanal. Chem., 385, 45 (1995) https://doi.org/10.1016/0022-0728(94)03705-8
  4. S. Hall, E. Khudaish, and A. Hart, Electrochimica Acta, 43, 579 (1997) https://doi.org/10.1016/S0013-4686(97)00125-4
  5. J. W. Yeon, S. I. Pyun, W. J. Lee, I. K. Choi, and K. S. Chun, J. Korean Electrochem. Soc., 3, 5 (2000)
  6. J. W. Yeon, S. I. Pyun, W. J. Lee, and I. K. Choi, J. Korean Electrochem. Soc., 3, 49 (2000)
  7. K. R. Yang, 'Water Chemistry and Failure Analysis on Nuclear Power Plant', KAERl/RR-416/83, KAERl (1984)
  8. D. Macdonald, A. Scott, and P. Wentrcek, J. Electrochem. Soc., 126, 1618 (1979) https://doi.org/10.1149/1.2129342
  9. F. King, M. Bailey, C. Clarke, B. Ikeda, C. Litke, and S. Ryan, 'A High-Temperature, High-Pressure, Silver-Silver Chloride Reference Electrode', AECL-9890, AECL (1989)
  10. D. Sawyer, A. Sobkowiak, and J. Roberts, 'Electrochemistry for Chemists', 2nd ed., 17, John Wiley & Sons, New York (1994)
  11. P. Atkins, 'Physical Chemistry', 835, W. H. Freeman and Company, San Francisco (1979)
  12. M. Tarasevich, A. Sadkowski, and E. Yeager, 'Comprehensive Treatise of Electrochemistry', 314, Plenum Press, New York (1983)
  13. R. Mesmer, D. Palmer, J. Simonson, H. Holmes, and P. Ho, Pure & Appl. Chem., 69, 905 (1997) https://doi.org/10.1351/pac199769050905