• 제목/요약/키워드: Hydrogen mixtures

검색결과 234건 처리시간 0.02초

대봉 금-은광상에 대한 유체포유물 및 안정동위원소 연구 (Stable Isotope and Fluid Inclusion Studies of the Daebong Gold-silver Deposit, Republic of Korea)

  • 유봉철;이현구;김상중
    • 자원환경지질
    • /
    • 제36권6호
    • /
    • pp.391-405
    • /
    • 2003
  • 대봉 금-은광상은 선캠브리아기 경기육괴의 호상 또는 화강편마암내에 발달된 단열대(NE, NW)를 따라 충진한 중열수 괴상석영맥광상이다. 광석광물의 산출조직과 공생관계에 의하면, 이 광상의 광화작용은 여러번의 단열작용에 의해 형성된 괴상백색석영맥(광화I시기)과 투명석영시기(광화II시기)로 구성된다. 광화I기는 3회의 substages로 구분된다. 각 substage의 광석광물은 다음과 같다: 1) 광화I시기 조기=자철석, 자류철석, 유비철석, 황철석, 섬아연석, 황동석, 2) 광화I시기 중기=자류철석, 유비철석, 황철석, 백철석, 섬아연석, 황동석, 방연석, 에렉트럼과 3) 광화I시기 말기=황철석, 섬아연석, 황동석, 방연석, 에렉트림, 휘은석. 광화II시기의 광석광물로는 황철석, 섬아연석, 황동석, 방연석 및 에렉트럼이 관찰된다. 유체포유물의 체계적 연구에 의하면, 물리-화학적 상태가 상반되는 유체가 관찰된다: 1) 광화 I시기 조기와 중기 광석광물 정출과 관련된 $H_2O-CO_2-CH_4-NaCl{\pm}N_2$ 유체(조기=균일화온도: 203∼388^{\circ}C$, 압력: 1082∼2092 bar, 염농도: 0.6∼13.4wt.%, 중기=균일화온도: 215∼280^{\circ}C$, 염농도: 0.2∼2.8wt.%), 2) 광화I시기 말기와 광화II시기 광석광물과 관련된 $H_2O-NaCl{\pm}CO_2$ 유체(광화I시기 말기=균일화온도: 205∼2$88^{\circ}C$, 압력: 670bar, 염농도: 4.5∼6.7wt.%, 광화II시기=균일화온도: 201∼358^{\circ}C$, 염농도: 0.4∼4.2wt.%)이다. 광화I시기 조기의 $H_2O-CO_2-CH_4-NaCl{\pm}N_2$계 유체는 유체압력의 차이에 의해 CO_2$ 상분리가 일어났으며 광화작용이 진행됨에 따라 $H_2O-NaCl{\pm}CO_2$계 유체로 진화되었다. 또한 여기에 기원이 다른 $H_2O$-NaCl계 유체의 유입에 의해 혼입 및 희석작용으로 염농도의 감소가 있었다고 생각된다. 광화II시기 좀더 가열된 $H_2O-NaCl{\pm}CO_2$ 계 유체는 불혼합, 희석 및 냉각작용이 있었던 것으로 생각된다. 열수용액의 {\gamma}^{34}$S__{H2S}$ 값은 3.5∼7.9{\textperthansand}$로서 황은 주로 화성기원이지만 부분적으로 모암내의 황에서도 기원되었다고 생각된다. 광화유체의 산소({\gamma}^{18}O_{H2O}$)와 수소({\gamma}$D)안정동위원소값이 광화I시기에는 각각 11∼9.${\textperthansand}$, -92∼-86${\textperthansand}$, 광화 II시기에는 각각 0.3${\textperthansand}$(${\gamma}^{18}O_{H2O}$),-93${\textperthansand}$({\gamma}$D)이며, 리본-호상구조를 보이는 것으로 보아 대봉광상의 광화유체에 대한 기원과 진화과정을 두 가지로 생각할 수 있다. 1) 마그마유체로부터 광화작용이 진행됨에 따라 계속적인 순환수의 혼입이 있었으며 2) 조기 마그마${\pm}$변성유체에서 유체압력의 차에 의해 $CO_2$ 상분리와 더불어 계속적인 ${\gamma}$D가 높은 순환수의 혼입이 있었던 것으로 해석할 수 있다.있다.

Low temperature plasma deposition of microcrystalline silicon thin films for active matrix displays: opportunities and challenges

  • Cabarrocas, Pere Roca I;Abramov, Alexey;Pham, Nans;Djeridane, Yassine;Moustapha, Oumkelthoum;Bonnassieux, Yvan;Girotra, Kunal;Chen, Hong;Park, Seung-Kyu;Park, Kyong-Tae;Huh, Jong-Moo;Choi, Joon-Hoo;Kim, Chi-Woo;Lee, Jin-Seok;Souk, Jun-H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.107-108
    • /
    • 2008
  • The spectacular development of AMLCDs, been made possible by a-Si:H technology, still faces two major drawbacks due to the intrinsic structure of a-Si:H, namely a low mobility and most important a shift of the transfer characteristics of the TFTs when submitted to bias stress. This has lead to strong research in the crystallization of a-Si:H films by laser and furnace annealing to produce polycrystalline silicon TFTs. While these devices show improved mobility and stability, they suffer from uniformity over large areas and increased cost. In the last decade we have focused on microcrystalline silicon (${\mu}c$-Si:H) for bottom gate TFTs, which can hopefully meet all the requirements for mass production of large area AMOLED displays [1,2]. In this presentation we will focus on the transfer of a deposition process based on the use of $SiF_4$-Ar-$H_2$ mixtures from a small area research laboratory reactor into an industrial gen 1 AKT reactor. We will first discuss on the optimization of the process conditions leading to fully crystallized films without any amorphous incubation layer, suitable for bottom gate TFTS, as well as on the use of plasma diagnostics to increase the deposition rate up to 0.5 nm/s [3]. The use of silicon nanocrystals appears as an elegant way to circumvent the opposite requirements of a high deposition rate and a fully crystallized interface [4]. The optimized process conditions are transferred to large area substrates in an industrial environment, on which some process adjustment was required to reproduce the material properties achieved in the laboratory scale reactor. For optimized process conditions, the homogeneity of the optical and electronic properties of the ${\mu}c$-Si:H films deposited on $300{\times}400\;mm$ substrates was checked by a set of complementary techniques. Spectroscopic ellipsometry, Raman spectroscopy, dark conductivity, time resolved microwave conductivity and hydrogen evolution measurements allowed demonstrating an excellent homogeneity in the structure and transport properties of the films. On the basis of these results, optimized process conditions were applied to TFTs, for which both bottom gate and top gate structures were studied aiming to achieve characteristics suitable for driving AMOLED displays. Results on the homogeneity of the TFT characteristics over the large area substrates and stability will be presented, as well as their application as a backplane for an AMOLED display.

  • PDF

사과원토양(園土壤)의 광물학적특성(鑛物學的特性)에 관(關)한 연구(硏究) (Studies on the Mineralogical Characteristics of Apple Orchard Soils)

  • 이만정
    • 한국토양비료학회지
    • /
    • 제6권3호
    • /
    • pp.141-152
    • /
    • 1973
  • 화강암(花崗岩), 화강섬록암(花崗閃綠岩), 섬록암(閃綠岩), Arkose 질사암(質砂岩), 및 Tertiary 혈암(頁岩)등에 유래(由來)된 사과과수원(果樹園) 11개처(個處)의 하층토(下層土)에 대(對)해서 광물(鑛物)의 풍화과정(風化過程)과 토양생성작용(土壤生成作用) 및 광물조성(鑛物組成)과의 관계(關係)를 밝히기 위(爲)하여 일(一), 이차광물(二次鑛物)에 대(對)한 광물학적(鑛物學的) 연구(硏究)를 시도(試圖)한 결과(結果)는 다음과 같다. 1. 일차광물(一次鑛物)로서 Quartz, Changed-feldspar, Plagioclase, Alkali-feldspar 등은 거의 모든 시료(試料)에 존재(存在)하였고, 또 시료(試料)에 따라 Hornblende, Biotite, Muscovite 및 Plant opal를 가진 것도 있었으며, 그 밖에 양(量)은 적으나마 Pyroxene group, Tourmaline, Epidote, Cyanite, Magnetite, Volcanic glass 및 Zircon 등도 찾아 볼 수 있었다. 토양(土壤)의 광물학적조성(鑛物學的組成)은 모재(母材)의 특성(特性)을 어느정도(程度) 반영(反映)하고 있어서, 주(主)로 Granite, Granodiorite, Diorite, Arkose 또는 그들의 풍화생성물(風化生成物)이 서로 혼입(混入)된 것에 유래(由來)된 것으로 추정(推定)할 수 있었다. 2. 점토광물조성(粘土鑛物組成)은 팽창형(膨脹型) 또는 비팽창형(非膨脹型) ${\AA}14$광물(鑛物), Illite 및 Kaolin 광물(鑛物)이 주성분(主成分)으로 되고, 시료(試料)에 따라서는 Chlorite, Christobalite, Gibbsite와 일차광물(一次鑛物)인 Quartz 및 Feldspar를 가지고 있었으나 양적(量的)으로는 모재(母材)에 따라 차(差)가 있었다. 3. 비팽창형(非膨脹型) $14{\AA}$광물(鑛物)로는 2, 8면체(面體) Vermiculite가 주(主)이고, 그 층격자간(層格子間)에 Gibbsite 모양의 수산화(水酸化) Aluminium 층(層)을 끼워 있는 것으로 추정(推定)된다. 4. Arkose 또는 Tertiary 혈암계암석(頁岩系岩石) 풍화생성물(風化生成物)에 유래(由來)된 것은 Montmorillonite가 주성분(主成分)이 였다. 그러나 Arkose만으로 된 것은 Kaolin 광물(鑛物)과 Vermiculite가 주(主)이고, 또 산성암풍화생성물(酸性岩風化生成物)이 주(主)로 된 곳은 Kaolin 광물(鑛物)을 주성분(主成分)으로 하는 것과, Kaolin 광물(鑛物) 및 Vermiculite를 주성분(主成分)으로 하는 두 Group로 크게 나눌 수 있었다.

  • PDF

삼광 금-은광상의 산출광물, 유체포유물 및 안정동위원소 연구 (Stable isotope, Fluid Inclusion and Mineralogical Studies of the Samkwang Gold-Silver Deposits, Republic of Korea)

  • 유봉철;이현구;최선규
    • 자원환경지질
    • /
    • 제35권4호
    • /
    • pp.299-316
    • /
    • 2002
  • 삼광 금-은광상은 선캠브리아기 경기육괴의 호상 또는 화강편마암내에 발달된 단열대(NE,NW)을 따라 충진한 함금-은괴상석영맥광상이다. 이 광상의 광화작용은 여러번의 단열작용에 의해 형성된 동일시기의 석영맥으로 구성되어있다. 광석조직과 광석광물의 공생관계를 기초로 하여, 이 광산의 괴상석영맥은 2기의 광화시기가 관찰되며 주 광화시기는 광화I시기이다. 모암변질은 견운모화작용, 녹니석화작용, 규화작용이 우세하며 황철석화작용, 탄산염화작용, 프로필라이트화작용 및 점토화작용이 관찰된다. 광석광물은 주로 유비철석(29.21-32.24 As atomic %), 황철석, 섬아연석(6.45-13.82 FeS mole %), 황동석, 방연석과 소량의 자류철석, 백철석, 에렉트럼(39.98-66.82 Au atomic %) 및 함은석이다. 유체포유물의 체계적 연구에 의하면, 물리-화학적 상태가 상반되는 2가지의 유체가 관찰된다 : 1). 광화I시기 조기 황화광물 정출과 관련된 $H_{2}O-CO_{2}-CH_{4}-NaCl$ 유체(온도 :215-345$^{\circ}C$, 압력 :1296-2022 bar, 염농도 0.8-6.3 wt. %), 2).광화I시기 말기 황화광물 및 에렉트림과 관련된 $H_2O$-NaCL$\pm$CO2유체(온도 :203-441$^{\circ}C$, 압력:330 bar 염농도 :5.7-8.8 wt. %). H$_{2}$O-NaCL$\pm$$CO_2$ 유체는 광화작용이 진행됨에 따라 유체압력의 감소에 의하여 $H_{2}O-CO_{2}-CH_{4}-NaCl$ 유체의 불혼화와 순환수의 혼합에 의하여 진화된 유체이다. 열수용액의 ${\delta}^{34} {S}_{fluid}$값이 1.8-4.9$\textperthousand$로서 황의 기원은 화성기원을 지시한다. 산소(${\delta}^{18}O_{H2O}$)와 수소(${\delta}$D)안정동위원소값이 각각 -5.g-10.9$\textperthousand$, -lO2~-87$\textperthousand$로서 삼광금-은광상의 광화유체는 마그마유체로부터 계속적인 고순환수의 혼입이 있었던 것으로 생각된다.