Stable isotope, Fluid Inclusion and Mineralogical Studies of the Samkwang Gold-Silver Deposits, Republic of Korea

삼광 금-은광상의 산출광물, 유체포유물 및 안정동위원소 연구

  • 유봉철 (충남대학교 자연과학대학 지질학과) ;
  • 이현구 (충남대학교 자연과학대학 지질학과) ;
  • 최선규 (고려대학교 이과대학 지구환경과학과)
  • Published : 2002.08.01

Abstract

The Samkwang gold-silver deposits consist of gold-silver-bearing hydrothermal massive quartz veins which filled the fractures along fault shear (NE, NW) zones within Precambrian banded or granitic gneiss of Gyeonggi massif. Ore mineralization of this deposits occurred within a single stage of quartz vein which was formed by multiple episodes of fracturing and healing. Based on vein mineralogy and paragenesis, massive quartz veins are divided into two main paragenetic stages which are separated by a major faulting event. Main ore mineralization occurred at stage I. Wall-rock alteration from this deposits occur as mainly sericitization, chloritization, silicification and minor amounts of pyritization, carbonitization, propylitization and argillitization. Ore minerals are composed mainly of arsenopyrite (29.21-32.24 As atomic %), pyrite, sphalerite (6.45-13.82 FeS mole %), chalcopyrite, galena with minor amounts of pyrrhotite, marcasite, electmm (39.98-66.82 Au atomic %) and argentite. Systematic studies of fluid inclusions in early quartz veins and microcracks indicate two contrasting physical-chemical conditions: 1). temperature (215-345$^{\circ}$C) and pressure (1296-2022 bar) event with $H_{2}O-CO_{2}-CH_{4}-NaCl$fluids (0.8-6.3 wt. %) related to the early sulfide deposition, 2). temperature (203-441$^{\circ}$C) and pressure (320 bar) event with $H2_{O}$-NaCI $\pm$ $CO_{2}$ fluids (5.7-8.8 wt. %) related to the late sulfide and electrum assemblage. The H20-NaCI $\pm$ $CO_{2}$ fluids represent fluids evolved through fluid unmixing of an $H_{2}O-CO_{2}-CH_{4}-NaCl$fluids due to decreases in fluid pressure and influenced of deepcirculated meteoric waters possibly related to uplift and unloading of the mineralizing suites. Calculated sulfur isotope compositions (${\delta}^{34}S_{fluid}$) of hydrothermal fluids (1.8-4.9$\textperthousand$) indicate that ore sulfur was derived from an igneous source. Measured and calculated oxygen and hydrogen isotope compositions (${\delta}^{18}O_{I120}$, ${\delta}D$) of ore fluids (-5.9~10.9$\textperthousand$, -102~-87$\textperthousand$) indicate that mesothermal auriferous fluids at Samkwang gold-silver deposits were likely mixtures of $H_{2}O$-rich, isotopically less evolved meteoric water and magmatic fluids.

삼광 금-은광상은 선캠브리아기 경기육괴의 호상 또는 화강편마암내에 발달된 단열대(NE,NW)을 따라 충진한 함금-은괴상석영맥광상이다. 이 광상의 광화작용은 여러번의 단열작용에 의해 형성된 동일시기의 석영맥으로 구성되어있다. 광석조직과 광석광물의 공생관계를 기초로 하여, 이 광산의 괴상석영맥은 2기의 광화시기가 관찰되며 주 광화시기는 광화I시기이다. 모암변질은 견운모화작용, 녹니석화작용, 규화작용이 우세하며 황철석화작용, 탄산염화작용, 프로필라이트화작용 및 점토화작용이 관찰된다. 광석광물은 주로 유비철석(29.21-32.24 As atomic %), 황철석, 섬아연석(6.45-13.82 FeS mole %), 황동석, 방연석과 소량의 자류철석, 백철석, 에렉트럼(39.98-66.82 Au atomic %) 및 함은석이다. 유체포유물의 체계적 연구에 의하면, 물리-화학적 상태가 상반되는 2가지의 유체가 관찰된다 : 1). 광화I시기 조기 황화광물 정출과 관련된 $H_{2}O-CO_{2}-CH_{4}-NaCl$ 유체(온도 :215-345$^{\circ}C$, 압력 :1296-2022 bar, 염농도 0.8-6.3 wt. %), 2).광화I시기 말기 황화광물 및 에렉트림과 관련된 $H_2O$-NaCL$\pm$CO2유체(온도 :203-441$^{\circ}C$, 압력:330 bar 염농도 :5.7-8.8 wt. %). H$_{2}$O-NaCL$\pm$$CO_2$ 유체는 광화작용이 진행됨에 따라 유체압력의 감소에 의하여 $H_{2}O-CO_{2}-CH_{4}-NaCl$ 유체의 불혼화와 순환수의 혼합에 의하여 진화된 유체이다. 열수용액의 ${\delta}^{34} {S}_{fluid}$값이 1.8-4.9$\textperthousand$로서 황의 기원은 화성기원을 지시한다. 산소(${\delta}^{18}O_{H2O}$)와 수소(${\delta}$D)안정동위원소값이 각각 -5.g-10.9$\textperthousand$, -lO2~-87$\textperthousand$로서 삼광금-은광상의 광화유체는 마그마유체로부터 계속적인 고순환수의 혼입이 있었던 것으로 생각된다.

Keywords

References

  1. 광정 지질도폭설명서 강필종;임주환
  2. 자원환경지질 v.32 남한의 주요 금속광상산 석영내의 유체포유물의 가스성분과 용존성분의 화학조성 김규한;정해란
  3. 지질학회지 v.24 남한의 지하수 및 강수의 안정동위원소조성 김규한;中井信之
  4. 공주 지질도폭설명서 김서운;유환수;우영균
  5. 광산지질 v.19 삼광 금 광상의 광화온도 및 근원에 관한 연구 문건주
  6. 대흥 지질도폭설명서 엄상호;이민성
  7. 광산지질 v.24 충남 예산지역 활성광상의 성인에 관한 연구 우영균;최석원;박기화
  8. 자원환경지질 v.27 초염기성암 기원의 평안 및 대흥활석광상의 성인과 광물화학 윤상필;문희수;송윤구
  9. 암석학회지 v.3 대흥활석광상 주위의 편마암류의 지화학적 특징과 공존광물의 화학적 평형 이상헌;최기주
  10. 한국자원공학회지 v.35 삼광 금 은 광상에서 산출되는 에렉트럼의 산출상태와 화학조성 이현구;유봉철;김경웅;최선규
  11. Computers Geosci. v.23 Clathrates: Computer programs to calculate fluid inclusion V-X properties using clathrate melting temperatures. Bakker, R.J.
  12. Goechemistry of hydrothermal ore deposits(2nd ed.) Sulfide mineral Stabilities Barton, P.B.Jr.;Skinner, B.J.
  13. Econ. Geol. v.61 Phase relation involving sphalerite in the Fe-Zn-S system Barton, P.B.Jr.;Toulmin, P. https://doi.org/10.2113/gsecongeo.61.5.815
  14. Short course of the working group "inclusion in minerals" Microthermometric investigations: Th and Tm. practical and theoretical aspects Belkin, H.E.
  15. Geochim. Cosmochim. Acta v.47 Claculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H₂O-CO₂-NaCl on phase relations in geologic systems: Equation of state for H₂O-CO₂-NaCl fluids at high pressures and temperatures Bowers, T.S.;Helgeson, H.C. https://doi.org/10.1016/0016-7037(83)90066-2
  16. Am. Mineralogist v.74 FLINCOR: A microcomputer program for the reduction and inverstigation of fluid-inclusion data Brown, P.F.
  17. Mineralium Deposita v.28 Gold mineralisation at the Lady Bountiful mine, Western Australia: An example of a granitoid-hosted Archean I lode gold deposit Cassidy, K.F.;Bennett, J.M. https://doi.org/10.1007/BF02431598
  18. Am. Jour. Sci. v.290 Fluid inclusion evidence for P-V-T-X evolusion of hydrothermal solutions in late-Alpine gold-quarz veins at Brusson, Val D'ayas Diamond, L.W. https://doi.org/10.2475/ajs.290.8.912
  19. Short course of the working group "inclusion in minerals" Introduction to phase relations of CO₂-H₂O fluid inclusions Diamond, L.W.
  20. Geothermics Spec. Issue 2 v.1 Quantitative interpretation of chemical characteristics of hydrothermal systems Ellis, A.J.
  21. Geochem. Cosmochim. Acta v.44 Geothermal gas equilibria Giggenbach, W.F. https://doi.org/10.1016/0016-7037(80)90200-8
  22. Mineralium Deposita v.28 The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn block Groves, D.I. https://doi.org/10.1007/BF02431596
  23. Geochim. Cosmochim. Acta v.54 Methane in fluid inclusions from granulites: A product of hydrogen diffusion? Hall, D.L.;Bodnar, R.J. https://doi.org/10.1016/0016-7037(90)90360-W
  24. Econ. Geol. v.81 Thermodynamic predictions of the hydrothermal chemistry of arsenic and their significance for the paragentic sequence of some cassiterite-arsenopyrite-base metal sulfide deposits Heinrich, C.A.;Eadington, P.J. https://doi.org/10.2113/gsecongeo.81.3.511
  25. Geochem. Cosmochim. Acta v.48 An algorithm for finding composition, molar volume and isochors of CO₂-CH₄fluid inclusions from Th and Tfm(for Thhttps://doi.org/10.1016/0016-7037(84)90328-4
  26. Adv. Physical Geochemistry v.1 Volatile interactions in magmas. Inthermodynamics of minerals and melts Holloway, J.R.;Newton, R.C.(ed.);Navrotsky, A.(ed.);Wood, B.J.(ed.)
  27. Mineralog. Assoc. Canada Short Course Handbook v.6 Compositions and volumes of supercritical fluids in the earth's crust. In fluids inclusion: Applications to petrology Holloway, J.R.
  28. Geochim. Cosmochim. Acta v.45 Methane: an equation of state with application to the ternary system H₂O-CO₂-CH₄ Jacobs, G.K.;Kerrick, D.M. https://doi.org/10.1016/0016-7037(81)90035-1
  29. Mineralium Deposita v.28 Perspectives on genetic models for lode gold deposits Kerrick, R. https://doi.org/10.1007/BF02431595
  30. Am. Jour. Sci. v.281 A modified Redilch-Kwong equation for H₂O, CO₂, and H₂O-CO₂mixtures at elevated pressures and temperatures Kerrick, D.M.;Jacobs, G.K. https://doi.org/10.2475/ajs.281.6.735
  31. Geochemistry v.15 A study on hydrogen, oxygen and sulfur isotopic ratios of the hot spring waters in South Korea Kim, K.H.;Nakai, N.
  32. Geochem. Cosmochim. Acta v.53 Synthetic fluid inclusions: Ⅸ. Critical PVTX properties of NaCl-H₂O solutions Knight, C.L.;Bodnar, R.J.
  33. Can. Mineralogist. v.14 Phase relation involving arsenopyrite on the system Fe-As-S and their application Kretschmar, U.;Scott, S.D.
  34. U-Pb zircon ae of the Precambrian basement gneisses of South Korea no.21 Lee, J.H. Gaudette;Hueley, P.M.
  35. Korea. Econ. Environ. Geol. v.28 Structural constraints on gold-silver-bearing quartz mineralization in strike-slip fault system, Samkwang mine Lee, H.K.;Yoo, B.C.;Hong, D.P.;Kim, K.W.
  36. Geochim. Cosmochim. Acta v.43 Oxygen isotope fractionation in the system quartz-albite-anorthite-water Matsuhisa, Y.;Goldsmith, R.;Clayton, R.N. https://doi.org/10.1016/0016-7037(79)90099-1
  37. Computers Geosci. v.11 Fortran programs for calculation of fluid properties from microthermometric data on fluid inclusions Nicholls, J.;Crawford, M.L. https://doi.org/10.1016/0098-3004(85)90090-1
  38. Am. Jour. Sci. v.277 Devolatilization equilibria in graphitic systems Ohmoto, H.;Kerrick, D. https://doi.org/10.2475/ajs.277.8.1013
  39. Geochemistry of hydrothermal ore deposits(2nd ed.) Isotopes of sulfur carbon Ohmoto, H.;Rye, R.O.;Barnes, H.L.(ed.)
  40. Geochim. Cosmochim. Acta v.49 The P-V-T-X-fO₂evolution of H₂O-CO₂-CH₄-bearing fluid in a wolframite vein: Reconstruction from fluid inclusion studies Ramboz, C.;Schnapper, D.;Dubessy, J. https://doi.org/10.1016/0016-7037(85)90205-4
  41. Reviews in mineralogy. Mineral. Soc. America v.12 Fluid inclusion. Roedder, E.
  42. Mineralium Deposita v.24 Determining phase volumes of mixed CO₂-H₂O inclusions using microthermometric measurements Schwartz, M.O.
  43. Econ. Geol. v.66 Sphalerite geothermometry and geobarometry Scott, S.D.;Barnes, H.L. https://doi.org/10.2113/gsecongeo.66.4.653
  44. Econ. Geol. v.83 Gold-rich mesothermal vein deposits of the Republic of Korea: Geochemical studies of the Jungwon gold area Shelton, K.L.;So, C.S.;Chang, J.S. https://doi.org/10.2113/gsecongeo.83.6.1221
  45. Geology v.16 High angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits Sibson, R.H.;Robert, F.;Poulsen, K.H. https://doi.org/10.1130/0091-7613(1988)016<0551:HARFFP>2.3.CO;2
  46. Republic of Korea: Nonsan area. Neues Jahrb. Mineralogie Ahb. v.158 Stable isotope and fluid inclusion studies of gold-silver-bearing vein deposits, Cheonan-Cheongyang-Nonsan mining district, So, C.S.;Chi,S.J.;Shelton, K.L.
  47. Republic of Korea: A geochemical study. Mining Geology v.37 The Jeonui gold-silver mime So, C.S.;Chi, S.J.;Yu, J.S.;Shelton, K.L.
  48. Republic of Korea: Cheonan area. Econ. Geol. v.82 Stable isotope and fluid inclusion studies of gold and silver-bearing hydrothermal vein deposits, Cheonan-Cheongyang-Nonsan mining district So, C.S.;Shelton, K.L.
  49. Republic of Korea. Econ. Geol. v.82 Fluid inclusion and stable isotope studies of gold-silver-bearing hydrothermal vein deposits, Yeoju mining district So, C.S.;Shelton, K.L.
  50. Republic of Korea: Cheongyang area. Jour. Korean Inst. Mining Geol. v.21 Stable isotope and Fluid inclusion studies of gold-silver-bearing hydrothermal-vein deposits, Cheonan-Chongyang-Nonsan mining district So, C.S.;Shelton, K.L.;Chi, S.J.;Choi, S.H.
  51. Republic of Korea: Constraints on hydrothermal fluid geochemistry. Econ. Geol. v.92 Jurassic mesothermal gold mineralization of the Samhwanghak mine, Youngdong area So, C.S.;Yun, S.T.
  52. Boseong area: A fluid inclusion and stable isotope study. Jour. Korean Inst. Mining Geol. v.26 Mesothermal gold-silver mineralization at the Bodeok mine So, C.S.;Yun, S.T.;Kim, S.H. Youm, S.J.;Heo, C.H.;Choi, S.G.
  53. Geochim. Cosmochim. Acta v.54 Isochoric phase diagrams in the systems Co₂-CH₄and Co₂-N₂: Application to fluid inclusions Van Den Kerkhof, A.M. https://doi.org/10.1016/0016-7037(90)90358-R
  54. Short course of the working group "inclusion in minerals" Phase transitions and density calculation in the Co₂-CH₄-N₂system Van Den Kerkhof, A. M.;Thiery, R.
  55. Mineral chemistry of metal sulfides Vaughan, D.J.;Craig, J.R.
  56. Geology v.24 Pressure fluctuations, phase separation and gold precipitation during seismic fracture propagation Wilkinson, J.J.;Johnson, J.D. https://doi.org/10.1130/0091-7613(1996)024<0395:PFPSAG>2.3.CO;2
  57. Chem. Geology. v.64 Determination of the homogenization temperatures and densities of super-critical fluds in the system NaCl-KCl-CaCl₂-H₂O using synthetic fluid inclusions Zhang, Y-G.;Frantz, J.D. https://doi.org/10.1016/0009-2541(87)90012-X