• Title/Summary/Keyword: Hydrogen generation system

Search Result 280, Processing Time 0.031 seconds

A study on the channel design of bipolar plate of electrolytic cell of hydrogen gas generation system by flow dynamic simulation (수소가스발생 장치의 전해조 분라판의 유로설계에 관한 전산모사 연구)

  • Jo, Hyeon-Hak;Jang, Bong-Jae;Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.152-156
    • /
    • 2010
  • This study is focused on the channel design of bipolar plate in the electrode of hydrogen gas generator. The characteristics of hydrogen gas generation was studied in view of efficiency of hydrogen gas generation rate and a tendency of gas flow through the riv design of electrode. Since the flow rate of generated gas is the most crucial in determining the efficiency of hydrogen gas generator, we adopted the commercial analytical program of COMSOL $Multiphysics^{TM}$ to calculate the theoretical flow rate of hydrogen gas from the outlet of gas generator.

Self-sustainable Operation of a 1kW class SOFC System (1kW급 고체산화물 연료전지 발전시스템 자열운전)

  • Lee, Tae-Hee;Choi, Jin-Hyeok;Park, Tae-Sung;Yoo, Young-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.57-60
    • /
    • 2008
  • KEPRI has studied planar type SOFC stacks using anode-supported single cells and kW class co-generation systems for residential power generation. A 1kW class SOFC system consisted of a hot box part, a cold BOP part and a water reservoir. A hot box part contains a SOFC stack made up of 48 single cells and ferritic stainless steel interconnectors, a fuel reformer, a catalytic combustor and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation. A cold BOP part was composed of blowers, pumps, a water trap and system control units. When a 1kW class SOFC system was operated at $750^{\circ}C$ with hydrogen after pre-treatment process, the stack power was 1.2kW at 30 A and 1.6kW at 50A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about 1.3kW with hydrogen and 1.2kW with city gas respectively. The system also recuperated heat of about 1.1kW by making hot water.

  • PDF

Study on Sizing Calculation Method of Fuel Cell Propulsion Multirotor (연료전지 추진 멀티콥터의 사이징 계산 방법에 관한 연구)

  • LEE, DONGKEUN;AHN, KOOKYOUNG;KIM, YOUNGSANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.542-550
    • /
    • 2021
  • As the application of multirotor grows, the demands for multirotor that can fly longer and load more are increasing. Hydrogen has a high energy density, so it can satisfy these demands when used in multirotor. In order to design hydrogen fueled multirotor that satisfies the desired flight time and payload, it is important to calculate the specifications of a fuel cell, battery, and hydrogen storage system. This paper contains detailed information on various energy systems used in multirotor and fuel cell powered multirotor research trends. This study proposed a sizing calculation method that meets the target flight time and payload using thrust and power equations. It has been explained how the two equations derive the particular specifications. The specifications of the multirotor were derived by assuming a payload of 50 kg and a flight time of 1 hour. In addition, the effects of the values of the fuel cell, hydrogen storage system, and motor propeller were analyzed.

Fuel cell system for SUAV using chemical hydride - I. Lightweight hydrogen generation and control system (화학수소화합물을 이용한 소형 무인항공기용 연료전지 시스템 연구 - I. 경량 수소 발생 및 제어 장치)

  • Hong, Ji-Seok;Jung, Won-Chul;Kim, Hyeon-Jin;Lee, Min-Jae;Jeong, Dae-Seong;Jeon, Chang-Soo;Sung, Hong-Gye;Shin, Seock-Jae;Nam, Suk-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.226-232
    • /
    • 2013
  • A compact hydrogen generation device of fuel cell system using chemical hydride storage technique was designed to fit the propulsion device requirement of a small unmanned aerial vehicle(SUAV). For high efficient, compact, and lightweight hydrogen generation control device, the Co-B catalyst hydrogen conversion rate by $NaBH_4$ aqueous solution flux is measured so that the proper amount of Co-B catalyst for maximum hydrogen generation of 100W stack was proposed. A compact hydrogen generation device is controlled by pump's on/off using its own internal pressure and consumes fuel in high efficiency through a dead-end type fuel cell. The fuel cell system has stable operation for a planed flight profile. The system operates up to maximum 7 hours and at least 4 hours for tough flight profiles.

Voltage-Current Characteristics of Electrical Discharge Method for Hydrogen Generation (전기방전에 의한 수소제조방법의 전압-전류특성)

  • Choi, Y.M.;Kang, G.J.;Cha, S.Y.;Lee, W.M.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.1
    • /
    • pp.3-9
    • /
    • 1996
  • Hydrogen generation by electrical discharge through metal/water system is a viable method for on-demand applications. But its success depends on high energy efficiency defined as the ratio of the amount of consumed metal for a complete reaction with water to the electrical energy input. To improve the energy efficiency the electrical discharge has to sustain the hydrogen generation reaction with a minimal energy dissipation. Some experimental results on the discharge voltage-current profiles are reported and discussed.

  • PDF

Analysis on the Characteristics of RICEM for Researching Combustion Characteristics of Linear Hydrogen Power System (리니어 수소동력시스템의 연소연구용 급속흡입압축기의 특성 해석)

  • Lee, J.H.;Kim, K.M.;Jeong, D.Y.;Lee, Jong-T.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.1
    • /
    • pp.66-73
    • /
    • 2005
  • Hydrogen linear power system is estimated as the next generation power system which can obtain a performance as same as fuel cell. In order to develop Hydrogen combustion power system with high thermal efficiency, it is very important to understand the basic characteristics of hydrogen combustion and establish combustion stabilization technique of its system. In this study, RICEM(Rapid Intake Compression Expansion Machine) for researching of hydrogen combustion linear power system was manufactured and evaluated, and the basic characteristics of linear RICEM were analyzed.

The Effects of Nozzle Shapes and Pressures on Boundary Layer Flashback of Hydrogen-Air Combustor (수소 전소용 연소 노즐 형상과 연소실 압력이 경계층 역화에 미치는 영향)

  • WON JUNE LEE;JEONGJAE HWANG;HAN SEOK KIM;KYUNGWOOK MIN;MIN KUK KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.776-785
    • /
    • 2022
  • Hydrogen combustion in modern gas-turbine engine is the cutting edge technology as carbon-free energy conversion system. Flashback of hydrogen flame, however, is inevitable and critical specially for premixed hydrogen combustion. Therefore, this experimental investigation is conducted to understand flashback phenomenon in premixed hydrogen combustion. In order to investigate flashback characteristics in premixed hydrogen (H2)/air flame, we focus on pressure conditions and nozzle shapes. In general, quenching distance reduces as pressure of combustion chamber increases, causing flashback from boundary layer near wall. The flashback regime for reference and modified candidate configurations can broadly appear with increasing combustion chamber pressure. The later one can improve flashback-resist by compensating flow velocity at wall. Also, improved wall flow velocity profile of suggested contraction nozzle prevents entire flashback but causes local flashback at nozzle exit.

Nuclear Hydrogen Production Technology Development Using Very High Temperature Reactor (초고온가스로를 이용한 원자력수소생산 기술개발)

  • Kim, Yong-Wan;Kim, Eung-Seon;Lee, Ki-yooung;Kim, Min-hwan
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.4
    • /
    • pp.299-305
    • /
    • 2015
  • Nuclear hydrogen production technology is being developed for the future energy supply system. The sulfur-iodine thermo-chemical hydrogen production process directly splits water by using of the heat generated from very high temperature gas-cooled reactor, a typical Generation IV nuclear system. Nuclear hydrogen key technologies are composed of VHTR simulation technology at elevated temperature, computational tools, TRISO fuel, and sulfur iodine hydrogen production technology. Key technology for nuclear hydrogen production system were developed and demonstrated in a laboratory scale test facility. Technical challenges for the commercial hydrogen production system were discussed.

Hydrogen Generation by Electrical Discharge Through Metal / Water System

  • Park, Yong-Man;Kang, Goo-Jin;Cha, Suk-Yal;Lee, Woong-Moo
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.198-202
    • /
    • 1996
  • Reactive metals like aluminum generate hydrogen gas when it reacts with water. Aluminum, despite its high chemical affinity with water, cannot continue the reaction due to the passive oxide layers formed on its surface. When the reaction is assisted by electrical energy dissipation in the form of discharge, the reaction is more likely to be sustained. In this report, some preliminary experimental results are presented regarding the hydrogen generation based on this scheme.

  • PDF

Hydrogen Generation from Water Using CdS-ZnS Photocatalysts (CdS-ZnS 광촉매를 이용한 물의 광전기 분해에 의한 수소 발생)

  • Heo, Gwi Suk
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.1 no.1
    • /
    • pp.9-14
    • /
    • 1989
  • Mixed photocatalyst containing cadmium sulfide and zinc sulfide was prepared on silica gel powder and Nafion film. Photo-irradiation of aqueous mixture containing the photocatalysis generated hydrogen by water cleavage reaction. Use of sodium sulfide as sacrificial reagent help the photo-reaction. Evolution of the hydrogen was measured by gas chromatographic analysis. Composition of the catalyst was determined by atomic absorption spectrophotometer. 0.2 mL of of hydrogen was generated per hour. The maximun catalytic activity was obtained after 8-12 hours later. Hydrogen generation efficiency by the two different catalytic system was compared and showed that the Nafion-based catalyst is more efficient than the silicagel-based catalyst for the photoreaction.

  • PDF