• Title/Summary/Keyword: Hydrogen flame

Search Result 344, Processing Time 0.024 seconds

Laminar Flamelet Modeling of Combustion Processes and NO Formation in Nonpremixed Turbulent Jet Flames (Laminar Flamelet Model을 이용한 비예혼합 난류제트화염의 연소과정 및 NO 생성 해석)

  • Kim, Seong-Ku;Kim, Hoo-Joong;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.93-104
    • /
    • 1999
  • NOx formation in turbulent flames is strongly coupled with temperature, superequilibrium concentration of O radical, and residence time. This implies that in order to accurately predict NO level, it is necessary to develop sophisticated models able to account for the complex turbulent combustion processes including turbulence/chemistry interaction and radiative heat transfer. The present study numerically investigates the turbulent nonpremixed hydrogen jet flames using the laminar flamelet model. Flamelet library is constructed by solving the modified Peters equations and the turbulent combustion model is extended to nonadiabatic flame by introducing the enthalpy defect. The effects of turbulent fluctuation are taken into account by the presumed joint PDFs for mixture fraction, scalar dissipation rate, and enthalpy defect. The predictive capability of the present model has been validated against the detailed experimental data. Effects of nonequilibrium chemistry and radiative heat loss on the thermal NO formation are discussed in detail.

  • PDF

A Study on Idle Performance Improvements for a Gasoline Engine with the Syngas Assist (합성가스를 이용한 가솔린엔진 아이들 성능 개선에 관한 연구)

  • Song, Chun-Sub;Kim, Chang-Gi;Kang, Kern-Young;Cho, Young-Seok
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.245-251
    • /
    • 2005
  • Recently, fuel reforming technology for the fuel cell vehicle has been applied to internal combustion engines, with various purpose. Syngas which is reformed from fossil fuel has hydrogen as a major component. It has better effort in combustion characteristics such as wide flammability and hig speed flame propagation. In this study, syngas was added to a gasoline engine for the improvement of combustion stability and exhaust emission in idle state. Combustion stability, exhaust emissions, fuel consumption and exhaust gas temperature were measured to investigate the effects of syngas addition on idle performance. Results showed that syngas has ability to extend lean operation limit and ignition retard range. with dramatical reduction of engine out emissions.

  • PDF

Effect of H2/CO Ratio, Dilution Ratio, and Methane/Syngas Ratio on Combustion Characteristics of Syngas Turbine (H2/CO비, 희석량, 메탄/석탄가스비가 합성가스용 가스터빈의 연소특성에 미치는 영향)

  • Lee, Min Chul;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.59-60
    • /
    • 2012
  • This paper describes gas turbine combustion characteristics of synthetic gas which is mainly composed of hydrogen and carbon monoxide. The combustion characteristics such as combustion instability, NOx and CO emission, temperatures at turbine inlet, liner and dump plane, and flame structure were investigated when changing when changing $H_2:CO$ ratio, dilution ratio, and $CH_4:syngas$ ratio. From the results, quantitative relationships are derived between key aspects of combustion performance, notably NOx emission. It is concluded that NOx emission of syngas is strongly influenced by the diluent heat capacity and combustion instability. Moreover, NOx control method using diluents such as $N_2$, $CO_2$, steam is verified.

  • PDF

Hybrid RANS/LES simulation of Base-Bleed in Supersonic Flows (초음속 유동장에서 기저 분출 유동의 대와류 난류 모사)

  • Shin, Jae-Ryul;Won, Su-Hee;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.332-335
    • /
    • 2008
  • The purpose of this study is analysis of flow field where is around of injector of supersonic combustor which is bluff-body stabilized flame and hyper-mixer type of supersonic combustor injector by using hydrogen or hydrocarbon fuel. Various schemes are evaluated to supersonic backward step flow filed with massive separation region in validation step. Compounded scheme of 5th-order TVD-MUSCL, Roe FDS, S-A DES/DDES has a good performance in base and base-bleed flow.

  • PDF

Computational Validation of Supersonic Combustion Phenomena associated with Hypersonic Propulsion (극초음속 추진과 관련된 초음속 연소 현상의 수치적 검증)

  • Choi Jeong-Yeol;Jeung In-Seuck;Yoon Youngbin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.117-122
    • /
    • 1998
  • A numerical study is carried out to investigate the transient process of combustion phenomena associated with hypersonic propulsion devices. Reynolds averaged Navier-Stokes equations for reactive flows are used as governing equations with a detailed chemistry mechanism of hydrogen-air mixture and two-equation SST turbulence modeling. The governing equations are discretized by a high order accurate upwind scheme and solved in a fully coupled manner with a fully implicit time accurate method. At first, oscillating shock-induced combustion is analyzed and the comparison with experimental result gives the validity of present computational modeling. Secondly, the model ram accelerator experiment was simulated and the results show the detailed transient combustion mechanisms. Thirdly, the evolution of oblique detonation wave is simulated and the result shows transient and final steady state behavior at off-stability condition. Finally, shock wave/boundary layer interaction in combustible mixture is studied and the criterion of boundary layer flame and oblique detonation wave is identified.

  • PDF

Combustion Characteristics in Small Combustion Chamber Size about Quenching Distance (소염 거리에 근접하는 소형 연소실 환경에서의 연소특성)

  • Lee, Dae-Hoon;Choi, Kwon-Hyoung;Kwon, Se-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.2
    • /
    • pp.63-68
    • /
    • 2000
  • Combustion phenomenon in scale-downed combustor is investigated. As the combustor scale decreases surface to volume ratio increases and chamber size approaches quenching distance. As the combustor scales down surface to volume ratio increases resulting increased heat loss. And this heat loss can affect quenching and instability of the flame. To investigate this effect plastic mini combustor is made. Stoichiometricaly premixed Hydrogen / air gas is used as fuel. Initial chamber pressure and chamber size are varied and the effects are evaluated. Peak pressure decreased with the decrease in chamber height. As initial chamber pressure decreases peak pressure decreases and this change is more important than scale down effect till the chamber height of 1mm. With this result and further information following the experiments design parameter for micro engine can be established.

  • PDF

A Study on The Explosion Characteristics of Flammable Gases (가연성 가스의 폭발특성에 대한 연구)

  • 오규형;김한석;이춘하
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.3
    • /
    • pp.66-72
    • /
    • 1992
  • An experimental study was carried out to analyse the explosion characteristics of flammable gas-air mixtures. Used flammable gases were hydrogen, methane, acethylene, ethylene and pro-pane, explosion Pressure, explosoin pressure rising rate, and flame propagation velocity were measured experimentaly. The maximum explosion pressure and rising rate of flammmalbe gas air mixtures were appeared at the range of slightly higher concentration than the stoichiometric concentration. Initial pressure before explosion was controlled from 0.6 to 2.0kg/cm absolutly. Explosion pressure was increased with increment of the initial pressure, and the relationship between initial pressure and explosion pressure was Pe = KPi. The effect of vessel size on explosion characteristics was also analysed In this experiment. Explosion pressure was increased with in-creasing the vessel size, otherwise explosion pressure rising rate was decreased. When we locate a dummy material in vessel explosion pressure was decreased with increasing the dummy volume but exlosion pressure rising rate was increased.

  • PDF

An Experimental on Cellular Instability and Laminar Burning Velocity of SNG Fuel (SNG 연료의 셀 불안정성 및 층류연소속도에 관한 실험적 연구)

  • Kim, Dongchan;Jo, Junik;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.109-112
    • /
    • 2015
  • This article describes a cellular instability and laminar burning velocity of simulated synthetic natural gas(SNG) including 3% hydrogen. In this study, experimental apparatus is employed using cylindrical bomb combustor, and investigation is carried out with high speed camera and Schlieren system. The cellular instability is caused by the buoyancy, hydrodynamic instability. Unstretched burning velocity can be determined by extrapolated stretch rate of zero point from measured results. These results were also compared with numerical calculation by Chemkin package with GRI 3.0, USC-II, WANG, C3 Fuel mechanism. As an experimental conditions, equivalence ratios was adjusted from 0.8 to 1.3. From results of this work, the one was found that the cellular instability has occurred by effect of thermal expansion rate and flame thickness. As the other results, unstretched laminar burning velocity was best coincided with GRI 3.0 mechanism.

  • PDF

The Effect of DBD Plasma on Hydrocarbon Fuel Reforming and Change in Flammability Limits (DBD 플라즈마 개질에 의한 탄화수소계 연료 화염의 가연한계 변화)

  • Song, Mincheol;Ahn, Taekook;Nam, Younwoo;Park, Sunho
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.189-192
    • /
    • 2015
  • An experimental study was conducted to find the effect of DBD plasma on the flammability limits of inert-gas-diluted fuel. The results showed that the concentration of diluting nitrogen at flammability limit increased when nitrogen-diluted methane and propane were reformed by plasma, while it decreased when nitrogen-diluted ethylene was reformed by plasma. Gas chromatography results suggested that the fuel type dependence of flammability limits is due to the difference in the concentrations of hydrogen and hydrocarbon species in reformed fuel.

  • PDF

Dyeing Properties of Easily Dyeable m-Aramid Knit Fabric (염색이 용이한 메타 아라미드 편성물의 염색성에 관한 연구)

  • Lee, Bum Hoon
    • Textile Coloration and Finishing
    • /
    • v.32 no.3
    • /
    • pp.128-134
    • /
    • 2020
  • Heat and flame protecting cloth is usually made of meta aramid fiber because of its own properties. But the high inter molecular hydrogen bonding and high Tg is the reason of the difficulty to dye meta aramid fiber. Recently, it was commercialized that the easily dyeable meta aramid fiber(AMD) for improving dyeability. In this study, the dyeing properties of AMD dyed with cationic dyes were investigated. The K/S values of AMD were 5~10% higher than these of general meta aramid fiber(AM) in the case of 1%owf caused by the lower crystallinity of AMD. The difference between K/S values of AMD and AM was increased as increasing dyeing concentration. The washing and rubbing fastness grade of AM and AMD were similar and good to very good.