• Title/Summary/Keyword: Hydrogen density

Search Result 951, Processing Time 0.026 seconds

Small Punch Test of TRIP Steel Charged with Hydrogen under Different Electrolyte Condition (다른 전해질분위기에서 수소주입시킨 TRIP강의 SP시험)

  • Kim, Kwang-Sig;Yoo, Kwang-Hyun;Park, Jae-Woo;Kang, Kae-Myung
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.1
    • /
    • pp.64-70
    • /
    • 2015
  • In order to evaluate the degree of hydrogen embrittlement of TRIP steels charged with hydrogen according to varying the current density and the charging time under acid and alkaline electrolyte conditions were tested by small punch test. The results of SP test showed that the degree of hydrogen embrittlement at acid electrolyte condition was more effective factor compared to that of alkaline electrolyte condition. Therefore, all of the charging time and the charging current density were at the condition of acid electrolyte appeared as the main factor of the degree of hydrogen embrittlement in the condition of acid electrolyte. But, it was considered that the charging time compared to the charging current density at the condition of alkaline electrolyte was more effective factor to raise the degree of hydrogen embrittlement.

Cell Age Optimization for Hydrogen Production Induced by Sulfur Deprivation Using a Green Alga Chlamydomonas reinhardtii UTEX 90

  • KIM , JUN-PYO;KANG, CHANG-DUK;SIM, SANG-JUN;KIM, MI-SUN;PARK, TAI-HYUN;LEE, DONG-HYUN;KIM, DUK-JOON;KIM, JI-HEUNG;LEE, YOUNG-KWAN;PAK, DAE-WON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.131-135
    • /
    • 2005
  • Under sulfur deprived conditions, PS II and photosynthetic $O_2$ evolution by Chlamydomonas reinhardtii UTEX 90 are inactivated, resulting in shift from aerobic to anaerobic condition. This is followed by hydrogen production catalyzed by hydrogenase. We hypothesized that the photosynthetic capacity and the accumulation of endogenous substrates such as starch for hydrogen production might be different according to cell age. Accordingly, we investigated (a) the relationships between hydrogen production, induction time of sulfur deprivation, increase of chlorophyll after sulfur deprivation, and residual PS II activity, and (b) the effect of initial cell density upon sulfur deprivation. The maximum production volume of hydrogen was 151 ml $H_2$/l with 0.91 g/l of cell density in the late-exponential phase. We suggest that the effects of induction time and initial cell density at sulfur deprivation on hydrogen production, up to an optimal concentration, are due to an increase of chlorophyll under sulfur deprivation.

Hydrogen Embrittlement of TRIP Steel Charged with Hydrogen Under Two Type Electrolytes (2종 전해질 분위기하 수소주입된 TRIP 강의 수소취성)

  • Choi, Jong-Un;Lee, Sang-Wook;Lee, Kyung-Min;Kang, Kae-Myung
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.1
    • /
    • pp.57-63
    • /
    • 2015
  • The hydrogen was charged TRIP steel by electrochemical method under 0.5M $H_2SO_4$ electrolyte and 0.5M NaOH electrolyte with hydrogen charging conditions respectively. The degree of hydrogen embrittlement of TRIP steel was evaluated by using micro Vickers hardness tests. These results showed that the degree of hydrogen embrittlement in acidic electrolyte with hydrogen penetration and hydrogen diffusion through the depth of specimen was more sensitive than its alkaine electrolyte between two type electrolytes. However, it was investigated that micro Vickers hardnesses of surface in acidic electrolyte under two electrolyte were higher than those of alkaine electrolyte. It was thought that in case of hydrogen embrittlement in acid-ice electrolyte, hydrogen charging time was more effective than current density, in case of alkaine electrolyte, hydrogen current density was more effective than charaging time.

Comparison of the Internal Pressure Behavior of Liquid Hydrogen Fuel Tanks Depending on the Liquid Hydrogen Filling Ratio (액체수소 충전 비율에 따른 액체수소 연료탱크의 내부 압력 거동 비교)

  • Dongkuk Choi;Sooyong Lee
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.8-16
    • /
    • 2024
  • Because hydrogen has very low density, a different storage method is required to store the same amount of energy as fossil fuel. One way to increase the density of hydrogen is through liquefaction. However, since the liquefied temperature of hydrogen is extremely low at -252 ℃, it is easily vaporized by external heat input. When liquid hydrogen is vaporized, a self-pressurizing phenomenon occurs in which the pressure inside the hydrogen tank increases, so when designing the tank, this rising pressure must be carefully predicted. Therefore, in this paper, the internal pressure of a cryogenic liquid fuel tank was predicted according to the liquid hydrogen filling ratio. A one-dimensional thermodynamic model was applied to predict the pressure rise inside the tank. The thermodynamic model considered heat transfer, vaporization of liquid hydrogen, and fuel discharging. Finally, it was confirmed that there was a significant difference in pressure behavior and maximum rise pressure depending on the filling ratio of liquid hydrogen in the fuel tank.

Effect of hydrogen on adsorption of hydrocarbon fragments on graphene

  • Cho, Sangmo
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.464-466
    • /
    • 2014
  • We investigate the effect of hydrogen on adsorption of hydrocarbon molecules on graphene with density functional theory (DFT) calculations. In this study, we calculate the binding energies of hydrogen molecule, carbon atom and other hydrocarbon fragments such as CHx (x=1, 2, 3, 4) on graphene to find the most stable adsorption site. Then, to study the effect of hydrogen, we investigate the adsorption of hydrocarbon fragments in the presence of hydrogen atoms on graphene.

  • PDF

High Hydrogen Capacity and Reversibility of K-Decorated Silicon Materials

  • Park, Min-Hee;Ryu, Seol;Han, Young-Kyu;Lee, Yoon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1719-1721
    • /
    • 2012
  • We have investigated the $H_2$ adsorption structures and binding energies of the metal (M)-doped (M = Li, Na, K, Mg, and Al) silicon complexes, $M-Si_{19}H_{11}$ and $M-Si_{24}H_{12}$, using density functional calculations. Alkali metals are preferred as doping elements because the Mg-Si and Al-$H_2$ interactions are weak. The maximum numbers of $H_2$ molecules that can be adsorbed are four and five for M=Li and K, respectively. We propose that the K-decorated silicon material might be an effective hydrogen storage material with high hydrogen capacity and high reversibility.

A study of hydrogen embrittlement behavior in E.B welded 250,300 grade 18% Ni maraging steel (전자비임 용접한 250 및 300 Grade 18% Ni Maraging 강의 수소취화 거동에 관한 연구)

  • 윤한상;정병호
    • Journal of Welding and Joining
    • /
    • v.5 no.2
    • /
    • pp.53-59
    • /
    • 1987
  • The effect of applied stress, current density and heat-treatment after welding on the time to fracture, fracture behavior was investigated by the method of constant load tensile testing under catholic charging with hydrogen in E.B. welded 250,300 Grade 18% Ni Maraging steel sheet. The main results obtained are as follows: 1. All specimen showed the characteristic delayed failure and the time to fracture showed decreasing tendency with the increase in current density and applied stress. 2. Hydrogen embitterment susceptibility of notched specimen after solution-treatment and aging after welding was more increased than that of aged smooth specimen and as welded specimen. 3. Fracture surface showed a typical intergranular fracture on the border, a dimple pattern in the center of specimen and some quasi-cleavage fracture between the intergranular and the dimple.

  • PDF

A Density Functional Theory Study on a Series of Functionalized Metal-Organic Frameworks (작용기를 치환한 Metal-Organic Frameworks 에 대한 DFT 연구)

  • Kim Dae Jin;Lee Tae Beom;Choi Seung Hun;Lee Eun Seong;Oh Yu Jin;Hye Ji Hye;Kim Ja Heon
    • 한국전기화학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.329-334
    • /
    • 2005
  • In order to find out rational design and synthetic strategies toward efficient hydrogen storage materials, we performed quantum mechanical calculations on a series of the Metal-Organic Frameworks (MOFs) containing functionalized organic linkers. Based on the shape of frontier orbitals and the electrostatic potential map of various MOFs from density functional theory calculations, it was found that the delocalization of electron and asymmetric polarization of the organic linker play an important role in the hydrogen storage capacity of Metal-Organic Frameworks. The prediction of the modeling study could be supported by the hydrogen adsorption experiments using MOF-5 and amine substituted MOF-5, which showed more enhanced hydrogen storage capacity of amine substituted MOF-5 compared with that of MOF-5.

  • PDF

FUV Images and Physical Properties of the Orion-Eridanus Superbubble region

  • Ko, Young-Soo;Min, Kyoung-Wook;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.71.1-71.1
    • /
    • 2010
  • The far-ultraviolet (FUV) C IV and H2 emission spectra of Orion-Eridanus Superbubble (OES) is hereby presented. The OES seems to consist of multiple phase through the detection of highly-ionized gas and pervasive neutral hydrogen. The former is traced by hot gas while the latter is traced by cold medium. A spectral image made with H2 fluorescent emission shows that the spatial distribution of hydrogen molecule is well correlated with the dust map. The model spectra was taken from a photodissociation region (PDR) radiation code which finds a best suitable parameter such as hydrogen density and intensity of the radiation field. C IV emission is caused by intermediate temperature ISM about 10^5 K. Therefore we could get more clear evidence to reveal the morphology of OES. In this process, the hydrogen density and gas temperature were also estimated. The data were obtained with the Far-Ultraviolet Imaging Spectrograph (FIMS) and the whole data handling were followed by previous FIMS analysis.

  • PDF

Hydrogen Prodution by Sulfur Thermochemical Water Splitting Cycle: Part 1. H2O-SO2-I2 Reaction and Separation (황 - 요오드의 열화학적 물분리에 의한 수소제조연구 Part I. 물-이산화황-요오드 반응 및 분리)

  • Lee, K.I.;Min, B.T.;Kwon, S.G.;Kang, Y.H.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.1 no.1
    • /
    • pp.40-47
    • /
    • 1989
  • The sulfur-iodine thermochemical water splitting process of GA(General atomic) cycle was studied to produce hydrogen from water by $H_2-I_2-SO_2$ reactions. The experimental scale was 500g based on iodine. The reaction took 100 minutes, products could be separated two liquid phases due to their density difference:HI solution had a density of 2.39~2.61g/cc, and $H_2SO_4$ solution had 1.37~1.38g/cc. The condition of reaction was when weight ratio of $I_2/H_2O$ was 2/1 resulting in good phase separation and productivity.

  • PDF