• Title/Summary/Keyword: Hydrogen center

Search Result 1,654, Processing Time 0.027 seconds

Regulation of toll-like receptors expression in muscle cells by exercise-induced stress

  • Park, Jeong-Woong;Kim, Kyung-Hwan;Choi, Joong-Kook;Park, Tae Sub;Song, Ki-Duk;Cho, Byung-Wook
    • Animal Bioscience
    • /
    • v.34 no.10
    • /
    • pp.1590-1599
    • /
    • 2021
  • Objective: This study investigates the expression patterns of toll-like receptors (TLRs) and intracellular mediators in horse muscle cells after exercise, and the relationship between TLRS expression in stressed horse muscle cells and immune cell migration toward them. Methods: The expression patterns of the TLRs (TLR2, TLR4, and TLR8) and downstream signaling pathway-related genes (myeloid differentiation primary response 88 [MYD88]; activating transcription factor 3 [ATF3]) are examined in horse tissues, and horse peripheral blood mononuclear cells (PBMCs), polymorphonuclear cells (PMNs) and muscles in response to exercise, using the quantitative reverse transcription-polymerase chain reaction (qPCR). Expressions of chemokine receptor genes, i.e., C-X-C motif chemokine receptor 2 (CXCR2) and C-C motif chemokine receptor 5 (CCR5), are studied in PBMCs and PMNs. A horse muscle cell line is developed by transfecting SV-T antigen into fetal muscle cells, followed by examination of muscle-specific genes. Horse muscle cells are treated with stressors, i.e., cortisol, hydrogen peroxide (H2O2), and heat, to mimic stress conditions in vitro, and the expression of TLR4 and TLR8 are examined in stressed muscle cells, in addition to migration activity of PBMCs toward stressed muscle cells. Results: The qPCR revealed that TLR4 message was expressed in cerebrum, cerebellum, thymus, lung, liver, kidney, and muscle, whereas TLR8 expressed in thymus, lung, and kidney, while TLR2 expressed in thymus, lung, and kidney. Expressions of TLRs, i.e., TLR4 and TLR8, and mediators, i.e., MYD88 and ATF3, were upregulated in muscle, PBMCs and PMNs in response to exercise. Expressions of CXCR2 and CCR5 were also upregulated in PBMCs and PMNs after exercise. In the muscle cell line, TLR4 and TLR8 expressions were upregulated when cells were treated with stressors such as cortisol, H2O2, and heat. Migration of PBMCs toward stressed muscle cells was increased by exercise and oxidative stresses, and combinations of these. Treatment with methylsulfonylmethane (MSM), an antioxidant on stressed muscle cells, reduced migration of PBMCs toward stressed muscle cells. Conclusion: In this study, we have successfully cultured horse skeletal muscle cells, isolated horse PBMCs, and established an in vitro system for studying stress-related gene expressions and function. Expression of TLR4, TLR8, CXCR2, and CCR5 in horse muscle cells was higher in response to stressors such as cortisol, H2O2, and heat, or combinations of these. In addition, migration of PBMCs toward muscle cells was increased when muscle cells were under stress, but inhibition of reactive oxygen species by MSM modulated migratory activity of PBMCs to stressed muscle cells. Further study is necessary to investigate the biological function(s) of the TLR gene family in horse muscle cells.

Protective Role of Transduced Tat-Thioredoxin1 (Trx1) against Oxidative Stress-Induced Neuronal Cell Death via ASK1-MAPK Signal Pathway

  • Yeo, Eun Ji;Eum, Won Sik;Yeo, Hyeon Ji;Choi, Yeon Joo;Sohn, Eun Jeong;Kwon, Hyun Jung;Kim, Dae Won;Kim, Duk-Soo;Cho, Sung-Woo;Park, Jinseu;Han, Kyu Hyung;Lee, Keun Wook;Park, Jong Kook;Shin, Min Jea;Choi, Soo Young
    • Biomolecules & Therapeutics
    • /
    • v.29 no.3
    • /
    • pp.321-330
    • /
    • 2021
  • Oxidative stress plays a crucial role in the development of neuronal disorders including brain ischemic injury. Thioredoxin 1 (Trx1), a 12 kDa oxidoreductase, has anti-oxidant and anti-apoptotic functions in various cells. It has been highly implicated in brain ischemic injury. However, the protective mechanism of Trx1 against hippocampal neuronal cell death is not identified yet. Using a cell permeable Tat-Trx1 protein, protective mechanism of Trx1 against hydrogen peroxide-induced cell death was examined using HT-22 cells and an ischemic animal model. Transduced Tat-Trx1 markedly inhibited intracellular ROS levels, DNA fragmentation, and cell death in H2O2-treatment HT-22 cells. Tat-Trx1 also significantly inhibited phosphorylation of ASK1 and MAPKs in signaling pathways of HT-22 cells. In addition, Tat-Trx1 regulated expression levels of Akt, NF-κB, and apoptosis related proteins. In an ischemia animal model, Tat-Trx1 markedly protected hippocampal neuronal cell death and reduced astrocytes and microglia activation. These findings indicate that transduced Tat-Trx1 might be a potential therapeutic agent for treating ischemic injury.

Antioxidant and Antimelanogenic Effects of Stevia rebaudiana Flower Extract

  • So, Gyeongseop;Lee, Sung Ryul;Kim, Sung Hyeok;Ha, Chang Woo;Park, Yuna;Jang, Sohee;Bak, Jong Phil;Koo, Hyun Jung;Sohn, Eun-Hwa
    • Korean Journal of Plant Resources
    • /
    • v.32 no.3
    • /
    • pp.220-227
    • /
    • 2019
  • Stevia rebaudiana (Asteraceae), a perennial plant, has been used as a low-calorie sweetener and is being developed as a therapeutic agent for diabetes, hypertension, myocardial diseases, and microbial infections. Despite the common use of its leaves and stem, the bioavailability of the components present in S. rebaudiana flowers, when used as ingredients of cosmetics, has not been well investigated. Herein, we investigated the antioxidative and antimelanogenic effects of an aqueous extract of S. rebaudiana flowers (Stevia-F). Total flavonoid and phenolic content in Stevia-F were determined to be $8.64{\pm}0.23mg$ of quercetin equivalents/100 g and $631.5{\pm}2.01mg$ of gallic acid equivalents/100 g, respectively. The $IC_{50}$ values of Stevia-F for reducing power, and 2,2-diphenyl-1-picryl-hydrazyl-hydrate radical, hydrogen peroxide, and nitric oxide scavenging activities were 5541.96, 131.39, 466.34, and $10.44{\mu}g/mL$, respectively. Stevia-F showed inhibitory effects on the tyrosinase ($IC_{50}=134.74{\mu}g/mL$) and ${\alpha}$-glucosidase ($IC_{50}=114.81{\mu}g/mL$) activities. No significant cytotoxicity of Stevia-F was observed in B16F10 cells, treated with up to $100{\mu}g/mL$ of the extract for 24 and 48 h (p > 0.05). Stevia-F ($1-100{\mu}g/mL$) suppressed ${\alpha}$-melanocyte stimulating hormone-induced melanin production in B16F10 cells (p < 0.05) and also inhibited the cellular tyrosinase activity (p < 0.05). Overall, our results show that Stevia-F possesses potential for inhibiting tyrosinase and ${\alpha}$-glucosidase activities and has significant antioxidant capacity. The antimelanogenic potential of Stevia-F should extend the usage of S. rebaudiana flowers in the development of skin-whitening products.

Anthocyanins from Hibiscus syriacus L. Attenuate LPS-Induced Inflammation by Inhibiting the TLR4-Mediated NF-κB Signaling Pathway

  • Karunarathne, Wisurumuni Arachchilage Hasitha Maduranga;Molagoda, Ilandarage Menu Neelaka;Lee, Kyoung Tae;Choi, Yung Hyun;Kang, Chang-Hee;Jeong, Jin-Woo;Kim, Gi-Young
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.92-92
    • /
    • 2019
  • Excessive or chronic inflammation contributes to the pathogenesis of many inflammatory diseases such as sepsis, rheumatoid arthritis, and ulcerative colitis. Hibiscus syriacus L. has been used as a medicinal plant in many Asian countries, even though its anti-inflammatory activity has been unclear. Therefore, we investigated the anti-inflammatory effect of anthocyanin fractions from the H. syriacus L. varieties Pulsae (PS) on the lipopolysaccharide (LPS)-induced expression of proinflammatory mediators and cytokines in RAW264.7 macrophages. PS suppressed LPS-induced nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) secretion concomitant with downregulation of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Furthermore, PS inhibited the production of proinflammatory cytokines such as tumor necrosis factor-alpha ($TNF-{\alpha}$), interleukin-6 (IL-6), and IL-12 in LPS-stimulated RAW264.7 macrophages. Further study showed that PS significantly decreased LPS-induced nuclear translocation of the nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) subunits, p65 and p50. Molecular docking data showed that many anthocyanins from PS fit into the hydrophobic pocket of MD2 and bound to Toll-like receptor 4 (TLR4), indicating that PS inhibits the TLR4-MD2-mediated inflammatory signaling pathway. Especially, apigenin-7-O-glucoside most powerfully bound to MD2 and TLR4 through LYS122, LYS122, and SER127 at a distance of $2.205{\AA}$, $3.098{\AA}$, and $2.844{\AA}$ and SER441 at a distance of $2.873{\AA}$ (docking score: -8.4) through hydrogen bonding, respectively. Additionally, PS inhibited LPS-induced TLR4 dimerization/expression on the cell surface, which consequently decreased MyD88 recruitment and IRAK4 phosphorylation. PS completely blocked LPS-mediated mortality in zebrafish larvae by diminishing the recruitment of neutrophil and macrophages accompanied by low levels of proinflammatory cytokines. Taken together, our results indicate that PS attenuates LPS-mediated inflammation in both in vitro and in vivo by blocking the TLR4/MD2-MyD88/IRAK4-$NF-{\kappa}B$ axis. Therefore, PS might be used as a novel modulatory candidate for effective treatment of LPS-mediated inflammatory diseases.

  • PDF

Crystal Structures of Ni2$^{2+}$ - and Tl$^+$ - Exchanged Zeolite X, $Ni_{17}Tl_{58}Si_{100}Al_{92}O_{384} and Ni_{12}Tl_{68}Si_{100}Al_{92}O_{384}$

  • Song, Mi Gyeong;Yun, Bo Yeong;Kim, Yang
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.2
    • /
    • pp.164-170
    • /
    • 2001
  • The crystal structures of fully dehydrated Ni2+- and Tl+ -exchanged zeolite X (Ni17Tl58-X, and Ni12Tl68-X; X=Si100Al92O384) have been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at $21(1)^{\circ}C$ (a=24.380(4) $\AA$, 24.660(4) $\AA$, respectively). Their structures have been refined to the final error indices R1=0.037 and R2=0.043 with 485 reflections, and R1=0.039 and R2=0.040 with 306 reflections, respectively, for which I >36(I). In Ni17Tl58-X, 17 Ni2+ ions per unit cell were found at only two sites: 15 at site I at the center of the hexagonal prism (Ni-O=2.203(9) $\AA)$ and the remaining 2 at site II near single six-oxygen rings in the supercage (Ni-O=2.16(3) $\AA).$ Fifty-eight Tl+ ions were found at five crystallographic sites: 28 at site II (Tl-O=2.626(8) $\AA)$, 2 at site I' in the sodalite cavity near the hexagonal prism (Tl-O=2.85(1) $\AA)$, another 2 at site II' in the sodalite cavity (Tl-O=2.77(1) $\AA).$ The remaining 26 were found at two nonequivalent Ⅲ' sites with occupancies of 23 and 3. In Ni12Tl68-X, 12 Ni2+ ions per unit cell were found at two sites: 10 at site I (Ni-O=2.37(2) $\AA)$ and the remaining 2 at site II (Ni-O=2.13(2) $\AA).$ Sixty-eight Tl+ ions were found at five crystallographic sites: 28 at site II (Tl-O=2.63(1) $\AA)$, 12 at site I' (Tl-O=2.62(1) $\AA)$, 2 at site II' (Tl-O=3.01(2) $\AA)$, and the remaining 26 at two III' sites with occupancies of 23 and 3. It appears that Ni 2+ ions prefer to occupy site I and II, in that order. The large Tl+ ions occupy the remaining sites, I', II, II' and two different III' sites. In both crystals, only the Ni2+ ions at site II were reduced and migrated to the external surface of zeolite X when these crystals were treated with hydrogen gas.

Synthesis and Optical Property of (GaN)1-x(ZnO)x Nanoparticles Using an Ultrasonic Spray Pyrolysis Process and Subsequent Chemical Transformation (초음파 분무 열분해와 화학적 변환 공정을 이용한 (GaN)1-x(ZnO)x 나노입자의 합성과 광학적 성질)

  • Kim, Jeong Hyun;Ryu, Cheol-Hui;Ji, Myungjun;Choi, Yomin;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.143-149
    • /
    • 2021
  • In this study, (GaN)1-x(ZnO)x solid solution nanoparticles with a high zinc content are prepared by ultrasonic spray pyrolysis and subsequent nitridation. The structure and morphology of the samples are investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The characterization results show a phase transition from the Zn and Ga-based oxides (ZnO or ZnGa2O4) to a (GaN)1-x(ZnO)x solid solution under an NH3 atmosphere. The effect of the precursor solution concentration and nitridation temperature on the final products are systematically investigated to obtain (GaN)1-x(ZnO)x nanoparticles with a high Zn concentration. It is confirmed that the powder synthesized from the solution in which the ratio of Zn and Ga was set to 0.8:0.2, as the initial precursor composition was composed of about 0.8-mole fraction of Zn, similar to the initially set one, through nitriding treatment at 700℃. Besides, the synthesized nanoparticles exhibited the typical XRD pattern of (GaN)1-x(ZnO)x, and a strong absorption of visible light with a bandgap energy of approximately 2.78 eV, confirming their potential use as a hydrogen production photocatalyst.

Optimization of Briquette Manufacturing Conditions Using Steel Sludge (제강슬러지를 이용한 브리켓 제조 조건 최적화 연구)

  • Lee, Dong Soo;Chae, Hui Gwon;Park, Tae Jun
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.12-18
    • /
    • 2022
  • Korea depends on the import of raw materials such as iron ore and coal for the steel industry. These raw materials have a major impact on the cost, productivity, and quality competitiveness in the global steel industry. To secure the competitiveness of steel companies, it is necessary to reduce the country's dependence on raw materials. This can be achieved using byproducts with a high Fe content, which are primarily generated by the steel industry. These byproducts are available in the form of a very fine powder, which can disperse as dust when used directly in plant processes. Dust dispersion has a negative impact on the environment and can lead to the loss of raw materials. To enable the use of a wide range of Fe-containing byproducts, it is necessary to pretreat them in the form of larger aggregates such as pellets and briquettes. There are several methods to achieve such aggregates. There are two ways to produce briquettes: using a hot briquette, which supplies additional heat to produce briquettes, or using a cold briquette, which does not use heat. A method for producing cold briquettes using Fe-containing byproducts was investigated in this study. The yield ratio and briquette strength were examined under various manufacturing conditions.

Neuroprotective Effect of Root Extracts of Berberis Vulgaris (Barberry) on Oxidative Stress on SH-SY5Y Cells

  • Rad, Elham Shahriari;Eidi, Akram;Minai-Tehrani, Dariush;Bonakdar, Shahin;Shoeibi, Shahram
    • Journal of Pharmacopuncture
    • /
    • v.25 no.3
    • /
    • pp.216-223
    • /
    • 2022
  • Objectives: Oxidative stress plays a key role in chronic and acute brain disorders and neuronal damage associated with Alzheimer disease (AD) and other neurodegeneration symptoms. The neuroprotective effects of berberine and Berberis vulgaris (barberry) root extract against apoptosis induced by hydrogen peroxide (H2O2) in the human SH-SY5Y cell line were studied. Methods: The methanolic extraction of barberry root was performed using a maceration procedure. Oxidative stress was induced in SH-SY5Y cells by H2O2, and an MTT assay was applied to evaluate the neuroprotective effects of berberine and barberry root extract. The cells were pretreated with the half maximal inhibitory concentration (IC50) of each compound (including berberine, barberry root extract, and H2O2), and the anti-apoptotic effects of all components were investigated using RT-PCR. Results: The SH-SY5Y cell viability increased in both groups exposed to 75 and 150 ppm barberry extract compared with that in the H2O2-treated group. The data showed that exposing SH-SY5Y cells to 30 ppm berberine significantly increased the cell viability compared with the H2O2-treated group; treatment with 150 and 300 ppm berberine and H2O2 significantly decreased the SH-SY5Y cell viability and was associated with berberine cytotoxicity. The mRNA levels of Bax decreased significantly under treatment with berberine at 30 ppm compared with the control group. A significant increase in Bcl-2 expression was observed only after treatment with the IC50 of berberine. The expression level of Bcl-2 in cells exposed to both berberine and barberry extracts was also significantly higher than that in cells exposed to H2O2. Conclusion: The outcomes of this study suggest that treatment of SH-SY5Y cells with barberry extract and berberine could suppress apoptosis by regulating the actions of Bcl-2 family members.

Hydrological Characteristics of the Underground Discharge at Moolgol in Dokdo, Korea (독도 물골 지하유출수의 수문학적 특성)

  • Woo, Nam C.;Lee, Dong Y.;Park, Jong H.;Kim, Yoon B.;Woo, Min S.;Park, Chan H.
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.45-51
    • /
    • 2022
  • Whether Dokdo can sustain human habitation or economic life of their own plays an important role to the legal status of the island in the international maritime law. This study reports the hydrological survey results regarding the water resource of the island occurred at Moolgol in Seodo. The amount of underground discharge at Moolgol was estimated at least 1.1 m3/d, conforming the results of previous studies. Based on the oxygen and hydrogen isotope ratios of water, the discharge appeared to originate from precipitation, and about 36% of the daily precipitation moves fast to the Moolgol through the joints developed in the volcanic bedrocks. Quality of the discharged water shows relatively higher concentrations in Cl and NO3 to be used for drinking and domestic purposes, probably affected by the sea spray and waves from surrounding sea and the birds' excretion such as black-tailed gulls.

Synthesis of Ni-MWCNT by pulsed laser ablation and its water splitting properties (레이저 어블레이션 공정에 의한 Ni-MWCNT 합성 및 물분해 특성)

  • Cho, Kyoungwon;Chae, Hui Ra;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.2
    • /
    • pp.77-82
    • /
    • 2022
  • Recently, research on the development of low-cost/high-efficiency water electrolysis catalysts to replace noble metal catalysts is being actively conducted. Since overvoltage reduces the overall efficiency of the water splitting device, lowering the overvoltage of the oxygen evolution reaction (OER) is the most important task in order to generate hydrogen more efficiently. Currently, noble metal catalysts show excellent characteristics in OER performance, but they are experiencing great difficulties in commercialization due to their high price and efficiency limitations due to low reactivity. In this study, a water electrolysis catalyst Ni-MWCNT was prepared by successfully doping Ni into the MWCNTs structure through the pulsed laser ablation in liquid (PLAL) process. High resolution-transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS) were performed for the structure and chemical composition of the synthesized Ni-MWCNT. Catalytic oxygen evolution reaction evaluation was performed by linear sweep voltammetry (LSV) overvoltage characteristics, Tafel slope, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and Chronoamperometry (CA) was used for measurement.