• Title/Summary/Keyword: Hydrogen center

Search Result 1,654, Processing Time 0.035 seconds

Wet Co-Oxidation of Quinoline and Phenol (퀴놀린-페놀 혼합용액의 습식산화)

  • Ryu, Sung Hun;Yoon, Wang-Lai;Suh, Il-Soon
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.486-492
    • /
    • 2009
  • Wet oxidations (WO) of quinoline in aqueous solution were carried out at $225^{\circ}C$ and $250^{\circ}C$. In the WO at $250^{\circ}C$, quinoline was degraded completely within 30 min and the reduction in total organic carbon (TOC) of 63% was achieved during 120 min. However, the rate of the reduction in TOC was only 13% within 240 min during the WO at $225^{\circ}C$. Nicotinic and acetic acid were found to be main intermediates formed during the oxidation of quinoline. With the addition of the homogeneous catalyst $CuSO_4$ or more easily oxidizable phenol, WOs of quinoline were also carried out under moderate conditions at $200^{\circ}C$. The catalytic WO with $CuSO_4$ of 0.20 g/L showed the destruction rates of quinoline and TOC comparable to those in the WO at $250^{\circ}C$. The WOs of quinoline-phenol mixture exhibited induction periods to degrade quinoline and phenol during which free radicals were produced to initiate WOs. With increasing initial concentrations of phenol at a given initial concentration of quinoline, the induction periods in the destructions of quinoline and phenol became shorter and the reduction in TOC increased from 60% to 75% during 180 min of the WOs. The reduction rate of an induction period decreased as increasing the initial concentration ratio of phenol to quinoline. On the other hand, phenol degradation in the WOs of quinoline-phenol mixtures required a longer induction period and proceeded slower compared to the case of the WO of phenol.

Autotrophic Perchlorate-Removal Using Zero-Valent Iron and Activated Sludge: Batch Test (영가철과 활성슬러지를 이용한 독립영양방식의 퍼클로레이트 제거: 회분배양연구)

  • Ahn, Yeong-Hee;Ha, Myoung-Gyu
    • Journal of Life Science
    • /
    • v.21 no.3
    • /
    • pp.444-450
    • /
    • 2011
  • Perchlorate ($ClO_4^-$) is a contaminant found in surface water and soil/ground water. Autotrophic perchlorate-reducing bacteria (PRB) use hydrogen gas ($H_2$) as an electron donor to remove perchlorate. Since iron corrosion can produce $H_2$, feasibility of autotrophic perchlorate-removal using zero-valent iron (ZVI) was examined in this study using activated sludge that is easily available from a wastewater treatment plant. Batch test showed that activated sludge microorganisms could successfully degrade perchlorate in the presence of ZVI. The perchlorate biodegradation was confirmed by molar yield of $Cl^-$ as perchlorate was degraded. Scanning electron microscope revealed that rod-shaped microorganisms on the surface of iron particles used for the autotrophic perchlorate-removal, suggesting that iron particles could serve as supporting media for the formation of biofilm as well. DGGE analyses revealed that microbial profile of the inoculum (activated sludge) was different from that of biofilm sample obtained from the ZVI-added enrichment culture used for $ClO_4^-$-degradation. A major band of the biofilm sample was most closely related to the class Clostridia.

Effect of scan-bio laser therapy on arthropathy in rabbits (토끼의 관절병증에 미치는 SCAN-BIO 레이저의 치료효과)

  • Cho, Hyung-Jin;Kim, Young-Su;Oh, Dong-Min;Sim, Kyung-Mi;Kang, Seong-Soo;Lim, Sung-Chul;Cho, Yong-Seong;Lee, Soo-Han;Choi, Seok-Hwa;Bae, Chun-Sik
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.3
    • /
    • pp.475-482
    • /
    • 2004
  • For the induction of arthropathy, 4% hydrogen peroxide ($H_2O_2$) was injected for 4 weeks into the intra-articular space of the 25 New Zealand white rabbits to damage articular cartilage. The verification of arthropathy induction and the effect of scan-bio laser treatment were determined by measuring superoxide dismutase (SOD) activity, by observing gross and histopathologic findings. The SOD activity increased by about 40% in arthropathy group, as compared to controls. Although SOD activity in arthropathy group was not significantly different from the 2-week group, it was significantly different from the 4-week control and treatment groups. There was also a significant difference between the 4-week control and treatment groups. Grossly, erosions formed on the articular cartilage surface, and the lateral femoral condyle was damaged in arthropathy group. In comparison, there was slight, but not significant, progression of the lesion in the 2-week control group, and no difference between the 2-week treatment and control groups. Conversely, severe erosions damaged the articular cartilage in the 4-week control group. Cartilage proliferation was seen in gross observations in the 4-week treatment group, suggesting a treatment effect. Histopathologically, there was slight articular surface damage and apoptosis in arthropathy group, and serious cartilage damage, despite slight chondrocyte proliferation, in the 4-week control group. By contrast, the 4-week treatment group showed chondrocyte replacement, with close to normal articular cartilage on the articular surface. There was significant cartilage proliferation with regeneration of the articular cartilage on the articular surface in the group treated with low-level laser, as compared to control group, when arthropathy was induced by $H_2O_2$ injections. Therefore, low-level laser was effective in the treatment of chemically induced arthropathy.

Oxygen-deficient Reduced TiO2-X: Surface Properties and Photocatalytic Activity

  • Sinhamahapatra, Apurba;Jeon, Jong-Pil;Yu, Jong-Sung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.59-75
    • /
    • 2016
  • Reduced or black $TiO_{2-x}$ materials with oxygen-deficiency have been achieved by creating oxygen vacancies and/or defects at the surface using different methods. Fascinatingly, they exhibited an extended absorption in VIS and IR instead of only UV light with bandgap decrease from 3.2 (anatase) to ~1 eV. However, despite the dramatic enhancement of optical absorption in black $TiO_{2-x}$ materials, they have failed to show expected visible light-assisted water splitting efficiency. This was ascribed to the high concentration of the surface defects and/or oxygen vacancies, considered as an electron donor to enhance donor density and improve the charge transportation in black $TiO_2$ can also act as charge recombination centers, which eventually decrease photocatalytic activity. Therefore, a black ot reducd $TiO_2$ material with optimized properties would be highly desired for visible light photocatalysis. In this report, a new controlled magnesiothermic reduction has been developed to synthesize reduced black $TiO_{2-x}$ in the presence $H_2/Ar$ for photocatalytic $H_2$ production from methanol-water system. The material possesses an optimum band gap and band position, oxygen vacancies, and surface defects and shows significantly improved optical absorption in the visible and infrared region. The synergistic effects enable the reduced $TiO_{2-x}$ material to show an excellent hydrogen production ability along with long-term stability under the full solar wavelength range of light and visible light, respectively, in the methanol-water system in the presence of Pt as a co-catalyst. These values are superior to those of previously reported black $TiO_2$ materials. On the basis of all the results, it can be realized that the outstanding activity and stability of the reduced of $TiO_{2-x}$ NPs suggest that a balanced combination of different factors like $Ti^{3+}$, surface defects, oxygen vacancy, and recombination center is achieved along with optimized bandgap and band position during the preparation employing magnesiothermic reduction in the presence of $H_2$. The controlled magnesiothermic reduction in the presence of $H_2$ is one of the best alternative ways to produce active and stable $TiO_2-based$ photocatalyst for $H_2$ production.

  • PDF

Anti-skin Aging Potential of Alcoholic Extract of Phragmites communis Rhizome

  • Ha, Chang Woo;Kim, Sung Hyeok;Lee, Sung Ryul;Jang, Sohee;Namkoong, Seung;Hong, Sungsil;Lim, Hyosun;Kim, Youn Kyu;Sohn, Eun-Hwa
    • Korean Journal of Plant Resources
    • /
    • v.33 no.6
    • /
    • pp.604-614
    • /
    • 2020
  • Chronological aging and photoaging affect appearance, causing wrinkles, pigmentation, texture changes, and loss of elasticity in the skin. Phragmites communis is a tall perennial herb used for its high nutritional value and for medicinal purposes, such as relief from fever and vomiting and facilitation of diuresis. In this study, we investigated the effects of ethanol extract of P. communis rhizome (PCE) on skin aging. The total flavonoid and total phenolic content in PCE were 2.92 ± 0.007 ㎍ of quercetin equivalents (QE) and 231.8 ± 0.001 ㎍ of gallic acid equivalents (GAE) per 100 mg of dried extract (n = 3). The half-maximal inhibitory concentration (IC50) values of PCE for 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and hydrogen peroxide scavenging activities were 0.96 and 0.97 mg/mL, respectively. PCE showed inhibitory effects on tyrosinase when L-tyrosine (IC50 = 1.25 mg/mL) and L-3,4-dihydroxyphenylalanine (IC50 = 0.92 mg/mL) were used as substrates. PCE treatment up to 200 ㎍/mL for 24 h did not cause any significant cytotoxicity in B16F10 melanocytes, human dermal fibroblasts (HDFs), and HaCaT keratinocytes. In B16F10 melanocytes, PCE (25 and 50 ㎍ /mL) inhibited melanin production and cellular tyrosinase activity after challenge with α-melanocyte-stimulating hormone (α-MSH; p < 0.05). In HDFs, PCE suppressed the mRNA expression of matrix metalloproteinase-1 (MMP-1) and reduced the activity of elastase (p < 0.05). In addition, ultraviolet B (UVB)-mediated downregulation of hyaluronic acid synthase-2 gene expression in HaCaT keratinocytes was also effectively suppressed by PCE treatment. Overall, our results showed that PCE has potential anti-skin aging activity associated with the suppression of hyperpigmentation, wrinkle formation, and reduction in dryness. PCE is a promising candidate for the development of an anti-skin aging cosmetic ingredient.

Amperometric Determination of Histamine using Immobilized Enzyme Reactors with Different Carriers (담체 고정화 효소 반응기를 이용한 Histamine의 전기화학적 측정)

  • Ji, Jung-Youn;Jeon, Yeon-Hee;Kim, Mee-Ra
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.22 no.1
    • /
    • pp.88-94
    • /
    • 2012
  • Histamine is a kind of primary biogenic amine arising from the decarboxylation of the amino acid L-histidine. The toxicology of histamine and its occurrence and formation in foods are especially emphasized in fermented foods. In this study, the biosensor for detection of histamine with functionalized multi-walled carbon nanotubes (MWCNT) was developed. We also searched for an appropriate insoluble substrate to immobilize the enzyme. The developed biosensor showed a detection limit of $0.1{\mu}M$ hydrogen peroxide. The enzyme reactor was prepared with diamine oxidase immobilized on insoluble carriers including CNBr-activated sepharose 4B, calcium alginate, and controlled pore size glass beads. The coupling efficiency of CNBr-activated sepharose 4B, calcium alginate, and controlled pore size glass beads were 48.5%, 40.3%, and 51.0%, respectively. In addition, the response currents on histamine with each immobilized enzyme reactor prepared with CNBr-activated sepharose 4B, calcium alginate, and controlled pore size glass beads were 120 nA, 110 nA, and 140 nA at $100{\mu}M$ of histamine concentration, respectively. Therefore, it is suggested that controlled pore size glass beads are the best carriers for immobilizing diamine oxidase to detect histamine in this biosensor.

Iodine Isotope Exchanges Between o-lodohippuric Acid and Radioiodide (오르토 요오도히퓨린산과 방사성요오드 이온간의 요오드 등위원소 교환반응)

  • Jae-Rok Kim;Ok-Doo Awh;Hyeon-Sook Koo;Kyung-Bae Park
    • Nuclear Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.145-152
    • /
    • 1981
  • Even though a lately reported method of high temperature exchange labelling of o-iodo-hippuric acid (Hippuran) in the absence of oxidizing agent was considered to be an attractive one, the exchange mechanism was somewhat unclear. In this study iodine isotope exchanges between o-iodohippuric acid (OIH) and radioiodide ($^{125}$ $I^{ }$) or between OIH and molecular radioiodine ($^{125}$ $I_2$) were carried out at two different temperatures. Rate constants and activation parameters were measured by applying a radio-paper chromatography technique. Since o-iodobenzoic acid is known as a by-product in the exchange labelling of OIH, data were also obtained for the OIB-iodide systems for comparison. The rate constant was increased in the order of OIB...$^{125}$ $I^{[-10]}$ >OIB...$^{125}$ $I_2$>OIH..$^{125}$ $I^{[-10]}$ >OIH...$^{125}$ $I_2$ and the activation parameters for OIH were generally larger than those for OIB :$\Delta$H$\neq$$_{OIH}$>$\Delta$H$\neq$$_{OIB}$, $\Delta$S$\neq$$_{OIH}$>$\Delta$S$\neq$$_{OIB}$. These results suggest that the mechanism of the high temperature exchange is predominantly nucleophilic even though some electrophilic character can also be involved depending upon reaction conditions. Such a fact may well be caused by a feasible formation of hydrogen bonding type transition state due probably to the ortho substituent effect of-CONHC $H_2$COOH. Thus, the high temperature exchange method is estimated to be quite effective for labelling Hippuran especially at a small research center where reducing agent-free $^{131}$ I is unavailable.ailable..

  • PDF

Comparison of Dry Reforming of Butane in Catalyst Process and Catalyst+Plasma Process over Ni/γ-Al2O3 Catalyst (뷰테인 건식 개질 반응을 위한 Ni/γ-Al2O3 촉매를 이용한 촉매 공정과 촉매+플라즈마 공정 비교)

  • Jo, Jin-Oh;Jwa, Eunjin;Mok, Young-Sun
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.1
    • /
    • pp.26-36
    • /
    • 2018
  • Conventional nickel-based catalyst processes used for dry reforming reactions have high activation temperatures and problems such as carbon deposition and metal sintering on the active sites of the catalyst surface. In this study, the characteristics of butane dry reforming reaction were investigated by using DBD plasma combined with catalytic process and compared with existing catalyst alone process. The physical and chemical properties of the catalysts were investigated using a surface area & pore size analyzer, XRD, SEM and TEM. Using $10%Ni/{\gamma}-Al_2O_3$ at $580^{\circ}C$, in the case of the catalyst+plasma process, the conversion of carbon dioxide and butane were improved by about 30% than catalyst alone process. When the catalyst+plasma process, the conversion of carbon dioxide and butane and the hydrogen production concentration are enhanced by the influence of various active species generated by the plasma. In addition, it was found that the particle size of the catalyst is decreased by the plasma in the reaction process, and the degree of dispersion of the catalyst is increased to improve the efficiency.

HVOF Thermal Spray Coating of WC-Co for Durability Improvement of High Speed Spindle (초고속 스핀들의 내구성 향상을 위한 WC-Co 분말의 HVOF 용사 코팅)

  • Kim, K.S.;Baek, N.K.;Yoon, J.H.;Cho, T.Y.;Youn, S.J.;Oh, S.K.;Hwang, S.Y.;Chun, H.G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.4
    • /
    • pp.179-189
    • /
    • 2006
  • High velocity oxygen fuel(HVOF) thermal spray coating of WC-Co powder is one of the most promising candidate for the replacement of the traditional hard chrome plating and ceramics coating because of the environmental problem of the very toxic $Cr^{6+}$ known as carcinogen and the brittleness of ceramics coating. WC-Co micron and nano powder were coated by HVOF thermal spraying method for the study of durability improvement of the high speed spindle. Coatings were planned by Taguchi program for the four spray parameters of spray distance, flow rates of hydrogen, oxygen and powder feed rate. Optimal coating process was obtained by the studies of coating properties such as porosity, surface roughness, micro hardness, and micro structure. WC-Co micron and nano powder were coated on the Inconel 718 substrate by the optimal coating process obtained in this study. The wear behaviors were studied by the sliding wear tester at room temperature and at an elevated temperature of $500^{\circ}C$ for the application to high speed spindle. Sliding wear test was carried out for four most promising hard coatings of chrome coating, ceramics coatings such as $A1_2O_3,\;Cr_2O_3$ and HVOF Co-alloy T800 for the comparison of their wear behaviors. HVOF WC-Co coating was better than other coatings showing highest micro hardness of 1400 Hv and comparable friction coefficients with others. HVOF WC-Co coating is a strong candidate for the replacement of the traditional hard chrome plating for the high speed spindle.

Photoemission Electron Micro-spectroscopic Study of the Conductive Layer of a CVD Diamond (001)$2{\times}1$ Surface

  • Kono, S.;Saitou, T.;Kawata, H.;Goto, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.7-8
    • /
    • 2010
  • The surface conductive layer (SCL) of chemical vapor deposition (CVD) diamonds has attracting much interest. However, neither photoemission electron microscopic (PEEM) nor micro-spectroscopic (PEEMS) information is available so far. Since SCL retains in an ultra-high vacuum (UHV) condition, PEEM or PEEMS study will give an insight of SCL, which is the subject of the present study. The sample was made on a Ib-type HTHP diamond (001) substrate by non-doping CVD growthin a DC-plasma deposition chamber. The SCL properties of the sample in air were; a few tens K/Sq. in sheet resistance, ${\sim}180\;cm^2/vs$ in Hall mobility, ${\sim}2{\times}10^{12}/cm^2$ in carrier concentration. The root-square-mean surface roughness (Rq) of the sample was ~0.2nm as checked by AFM. A $2{\times}1$ LEED pattern and a sheet resistance of several hundreds K/Sq. in UHV were checked in a UHV chamber with an in-situ resist-meter [1]. The sample was then installed in a commercial PEEM/S apparatus (Omicron FOCUS IS-PEEM) which was composed of electro-static-lens optics together with an electron energy-analyzer. The presence of SCL was regularly monitored by measuring resistance between two electrodes (colloidal graphite) pasted on the two ends of sample surface. Figure 1 shows two PEEM images of a same area of the sample; a) is excited with a Hg-lamp and b) with a Xe-lamp. The maximum photon energy of the Hg-lamp is ~4.9 eV which is smaller that the band gap energy ($E_G=5.5\;eV$) of diamond and the maximum photon energy of the Xe-lamp is ~6.2 eV which is larger than $E_G$. The image that appear with the Hg-lamp can be due to photo-excitation to unoccupied states of the hydrogen-terminated negative electron affinity (NEA) diamond surface [2]. Secondary electron energy distribution of the white background of Figs.1a) and b) indeed shows that the whole surface is NEA except a large black dot on the upper center. However, Figs.1a) and 1b) show several features that are qualitatively different from each other. Some of the differences are the followings: the two main dark lines A and B in Fig.1b) are not at all obvious and the white lines B and C in Fig.1b) appear to be dark lines in Fig.1a). A PEEMS analysis of secondary electron energy distribution showed that all of the features A-D have negative electron affinity with marginal differences among them. These differences can be attributed to differences in the details of energy band bending underneath the surface present in SCL [3].

  • PDF