• Title/Summary/Keyword: Hydrogen Storage capacity

Search Result 203, Processing Time 0.028 seconds

Process Simulation of LH2 Receiving Terminal with Membrane Storage Tank and Prediction of BOG Generation According to Change of Design Conditions (LH2 멤브레인 저장탱크 인수기지 공정모사 및 설계조건 변화에 따른 BOG 발생량 예측)

  • Kim, Donghyuk;Lee, Yeongbeom;Seo, Heungseok;Kwon, Yongsoo;Park, Changwon;Kwon, Hweeung
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.5
    • /
    • pp.49-57
    • /
    • 2022
  • If the hydrogen industry is activated in the future, the LH2 receiving terminal with membrane storage tank is a major way to store and send large capacity hydrogen. Since such a LH2 receiving terminal does not currently exist, the process simulation model of it was completed by referring to the design data on existing LNG receiving terminal with same typed storage tank. Based on this model, the amount of BOG generation according to change of design conditions, which is a very important factor in the operation of LH2 receiving terminal, was predicted. Through this, it was attempted to review the appropriate operating conditions to minimize the amount of BOG generated during unloading in LH2 receiving terminal with membrane storage tank.

Influence of Mechanical Alloying and Hydriding-Dehydriding Cycling on the Hydrogen-Storage Properties of Mg (기계적 합금처리와 수소화물 형성·분해 싸이클링이 Mg의 수소 저장성질에 미치는 영향)

  • Song, MyoungYoup
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.4
    • /
    • pp.151-160
    • /
    • 1998
  • The variation of the hydrogen-storage properties of Mg contained in the mechanically-allyed mixture with the weight percentage of nickel in the sample is investigated. The weight percentage of nickel transformed into the Mg2Ni phase, on the basis of the nickel weight, is highest in the Mg-10 wt.%Ni sample. For the first hydriding cycle, the effect of mechanical alloying on the hydriding rate of Mg is highest in the Mg-25 wt.%Ni sample. After activation, the effects of mechanical alloying and hydriding-dehydriding cycling on the hydriding rate of Mg are highest in the Mg-10 wt.%Ni sample. After sufficient hydriding-dehydriding cycling, the effects on the hydrogen-storage capacity of Mg are highest in the Mg-10 wt.%Ni sample. The effects on the hydriding and dehydriding rates of Mg are highest in the Mg-25wt.%Ni sample. Mg-25wt.%Ni, followed by Mg-10 wt.%Ni, is the optimum composition which has the best effects on the hydrogen-storage properties of Mg contained in the sample. The mechanical alloying and the hydriding-dehydriding cycling produce many defects, which can act as active nucleation sites, and increase the specific surface area, shortening the diffusion distance of hydrogen.

  • PDF

[ $H_2$ ] uptake of the Li dispersed nickel oxide nanotubes (리튬이 첨가된 니켈 산화물 나노튜브의 수소저장)

  • Lee, Jin-Bae;Lee, Soon-Chang;Lee, Sang-Moon;Lee, Young-Seak;Kim, Hae-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.39-46
    • /
    • 2006
  • Highly ordered Li dispersed nickel oxide nanotubes were prepared with anodic aluminum oxide (AAO) template for hydrogen storage. Electron microscope results showed that uniform length and diameter of nickel oxide nanotubes were obtained. The wall thickness and outer diameter of nickel oxide nanotubes are about 40 - 50 nm and 200 - 400 nm, respectively. It was observed that the diameter of nickel oxide nanotubes is bigger than the pore diameter of AAO template. Li dispersed nickel oxide were consisted of nanoflakes and had structures of nanotubes and nanorods. For increasing the hydrogen adsorption and desorption capacity, the Li dispersed nickel oxide nanotubes were fluorinated. The fluorinated Li dispersed nickel oxide nanotubes showed 1.65 wt% of the hydrogen adsorption capacities at 77 K under 47 atm.

A Study on the Intrinsic Degradation Behavior of LaNi5 (LaNi5의 intrinsic degradation 거동에 관한 연구)

  • Ahn, Hyo-Jun;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.2 no.1
    • /
    • pp.77-82
    • /
    • 1990
  • To investigate the effect of strains heat effect and thermal energy on the intrinsic degradation of $LaNi_5$, the changes of P-C-Isotherm curves under the condition of mainly applied one of the above factors were investigated. The revesible hydrogen storage capacity decreased by means of the hydrogenation at high temperature without cyclings or pressure induced cyclings with low thermal energy. The degree of degradation was more severe as the heat of hydrogenation reaction increased. Thus the intrinsic degradation of $LaNi_5$ depended upon lattice strain as well as thermal energy.

  • PDF

The Properties of the Metal Hydride electrodes prepared by Silicon Sealant (Si-sealant를 이용하여 제조한 금속수소화물 전극의 특성)

  • CHOI, Jeon;PARK, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.4 no.2
    • /
    • pp.23-28
    • /
    • 1993
  • The $(LM)Ni_{4.5}Co_{0.1}Mn_{0.2}Al_{0.2}$ hydrogen storage alloy powders were conducted 25wt% electroless copper plating in an acidic bath. For the preparation of a hydride electrodes, the copper coated alloy powder was mixed with Si-sealant(organosilicon) and compacted with $6t/cm^2$ at room temperature. The electrode characteristics were examined through electrochemical measurements in a half cell. As a sealant contents increased, the initial discharge capacity of si-sealant bounded electrode was lower and the activation rate in high current density was slower. For extended cycles, however, the electrodes with the Si-sealant were superior in a high rate discharge and useful range of temperature over the sealant-free electrode. In addition, the cycle life increased with increasing the amount of Si-sealant added. It can be suggested from the results that the Si-sealant as a binder could be applied to the preparation of the metal hydride electrode.

  • PDF

Electrode Fabrication and Electrochemical Characterization of a Sealed Ni-MH Battery for Industrial Use (산업용 밀폐형 니켈수소전지의 전극 제조 및 전기화학적 특성)

  • An, Yang-Im;Kim, Sae-Hwan;Jo, Jin-Hun;Kim, Ho-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.289-296
    • /
    • 2008
  • Electrochemical studies were performed by a half-cell test for the nickel hydroxide (cathode) and hydrogen storage alloy(anode) electrodes for the sealed Ni-MH batteries applicable to industrial use. The electrodes were fabricated and checked a charge efficiency and an internal pressure of the battery during charge-discharge cycling. In order to reduce the internal pressure of the sealed Ni-MH battery, cyclic voltammetry (CV) were performed on the electrodes of nickel hydroxide(cathode) and hydrogen storage alloy(anode), respectively. The results of the test showed clearly the oxidation/reduction and oxygen evolution reaction in a nickel hydroxide electrode and the hydrogenation behavior of a hydrogen storage electrode. The sealed Ni-MH battery of 130Ah was fabricated by using nickel hydroxide of a high over-voltage for an oxygen gas evolution and hydrogen storage alloy of a good performance for activation The battery showed a good characteristics such as a high charge efficiency of 98% at 1 C charge current, a low level internal pressure of 4 atm on a continuous over-charging and a large preservation capacity of 95% at 400 cycle.

Hydrogen Storage Properties of Zr-Based AB2-x Mx Metal Hydrides Made by Hydriding Combustion Synthesis (HCS) (자전연소합성법으로 제조한 Zr계 AB2-x Mx 금속수소화물의 수소저장특성)

  • Hur, Tae Hong;Han, Jeong Seb;Kim, Jin Ho
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.256-262
    • /
    • 2012
  • This study investigated the hydrogen storage properties of Zr-Based $AB_{2-x}M_x$ metal hybride made by HCS (Hydriding Combustion Synthesis). The materials were prepared by HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm, HCS 80 wt% $AB_2$-20 wt% Mg and pure Zr-Based $AB_2$, These materials were activated at 298 K under 20 bar. Both HCS 80 wt% $AB_2$-20 wt% Mg and HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm were absorbed within 1 minute. In the case of the $AB_2$, it was perfectly absorbed within 6 minutes. Then, the materials were evaluated to obtain P-C-T (Pressure-Composition-Temperature) curves at 298K. As a result, the hydrogen storage capacity of HCS 80 wt% $AB_2$-20 wt% Mg, HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm and pure Zr-Based $AB_2$ were determined to be 1.2, 1.6 and 1.74 wt%, respectively. The activation energy and rate controlling step were calculated by the Johnson-Mehl Avrami equation. The activation energies of HCS 80 wt% $AB_2$-20 wt% Mg, HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm and pure Zr-Based $AB_2$ were 26.91, 20.45, and 60.41 kJ/mol, respectively. Also, the values of ${\eta}$ in the Johnson-Mehl Avrami equation for HCS 80 wt% $AB_2$-20 wt% Mg, HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm and pure Zr-Based $AB_2$ are 0.60, 0.51, and 0.44. So, the rate controlling steps which indicate hydrogen storage mechanism are an one dimensional diffusion process.

Electrochemical Hydrogenation Behavior of Surface-Treated Mg-based Alloys for Hydrogen Storage of Fuel Cell (연료전지의 수소저장용 마그네슘계 합금의 표면제어에 의한 전기화학적 수소화 거동 연구)

  • Kim, Ho-Sung;Lee, Jong-Ho;Boo, Seong-Jae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.46-52
    • /
    • 2006
  • The effects of surface treatment on the hydrogen storage properties of a $Mg_2Ni$ alloy particle were investigated by the microvoltammetric technique, in which a carbon-filament microelectrode was manipulated to make electrical contact with the particle in a KOH aqueous solution. It was found that the hydrogen storage properties of $Mg_2Ni$ at room temperature were improved by the surface treatment with a nickel plating solution. The sodium salts(sodium phosphate and sodium dihydrogen citrate) contained in the nickel plating solution made the alloy form an amorphous-like state, resulting in an improved hydrogen charge/discharge capacity at room temperature as high as about 150[mAh/g] from the original value of 17[mAh/g]. Potential-step experiment was carried out to determine the apparent chemical diffusion coefficient of hydrogen atom($D_{app}$) in the alloy. Since the alloy particle we used here was a dense, conductive sphere, the spherical diffusion model was employed for data analysis. $D_{app}$ was found to vary the order between $10^{-8}{\sim}10^{-9}[cm^2/s]$ over the course of hydrogenation and dehydrogenation process.

Electrochemical Charge and Discharge Characteristics of Zr-Based Laves Phase Hydrogen Storage Alloys (Zr계 라-베상 수소저장합금의 전기화학적 충·방전특성)

  • Lee, Jae-Myoung;Kim, Chan-Jung;Kim, Dai-Ryong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.5 no.2
    • /
    • pp.99-109
    • /
    • 1994
  • To develop high capacity hydrogen storage alloys for secondary Ni/MH batteries, electrochemical charge/discharge characteristics of $Zr_{1-x}Ti_xMn_{1-y}V_yNi_{1-z}M_z$ (M=Al,Co,Fe) alloys were investigated, in which $0.2{\leq}x{\leq}0.6$, $0.2{\leq}y{\leq}0.8$, $0.2{\leq}z{\leq}0.4$. With increasing Ti content(x) and/or decreasing V content(y), lattice constants and maximum theoretical capacities of the alloys were decreased and equilibrium pressure of hydrogen absorption were increased. Electrochemical discharge capacities were increased with increasing Ti content(x). Especially, the alloys of x= 0.4~0.6 showed better charge/discharge efficiencies than those of x<0.4. Discharge capacities of $Zr_{0.4}Ti_{0.6}Mn_{0.4}V_{0.6}Ni_{0.8}Fe_{0.2}$, $Zr_{0.4}Ti_{0.6}Mn_{0.4}V_{0.6}Ni_{0.8}Al_{0.2}$ and $Zr_{0.5}Ti_{0.5}Mn_{0.4}V_{0.6}Ni_{0.6}Co_{0.4}$ were 385, 328 and 333mAh/g, respectively. These alloys were fully activated within five charge/discharge cycles and had a good charge and discharge rate capabilities and temperature characteristics.

  • PDF

Fabrication and Evaluation Hydrogenation Absorbing on Mg2NiHx-10 wt% CaF2 Composites (Mg2NiHx-10wt% CaF2 수소저장합금의 제조와 수소화 흡수평가)

  • YU, JE-SEON;HAN, JUNG-HUM;SIN, HYO-WON;HONG, TAE-WHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.553-557
    • /
    • 2020
  • It is possible that hydrogen could replace coal and petroleum as the predominant energy source in the near future, but several challenges including cost, efficiency, and stability. Mg and Mg alloys are attractive hydrogen storage materials because of their lightweight and high absorption capacity. Their range of applications could be further extended if their hydrogenation properties could be improved. The main emphasis of this study was to investigate their hydrogenation properties for Synthesis of 10wt.% CaF2 in Mg2NiHx systems. The effect of BCR (66:1) and MA time (96 hours) on the hydrogenation properties of the composite was investigated. also, Mg2NiHx-10wt% CaF2 composites prepared by Mechanical Alloying are used in this work to illustrate the effect of catalysts on activation energy and kinetics of Magnesium hydride.