• Title/Summary/Keyword: Hydrogen Station

Search Result 223, Processing Time 0.024 seconds

A Study on the Transaction Volume Calculation model for Improving the Measurement Accuracy of Hydrogen Fuelling Station (수소충전소 계량 정확도 향상을 위한 거래량 산출 모델 연구)

  • JINYEONG CHOI;HWAYOUNG LEE;SANGSIK LIM;JAEHUN LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.692-698
    • /
    • 2022
  • With the expansion of domestic hydrogen fuelling station infrastructure, it is necessary to secure reliability among hydrogen traders, and for this, technology to accurately measure hydrogen is important. In this study, 4 types of hydrogen trading volume calculation models (model 1-4) were presented to improve the accuracy of the hydrogen trading volume. In order to obtain the reference value of model 4, and experiment was conducted using a flow rate measurement equipment, and the error rate of the calculated value for each model was compared and analyzed. As a result, model 1 had the lowest metering accuracy, model 2 had the second highest metering accuracy and model 3 had the highest metering accuracy until a certain point. But after the point, model 2 had the highest metering accuracy and model 3 had the second metering accuracy.

A Study on Design of Ultra-High-Pressure Ball Valve for Hydrogen Station (수소 충전소용 초고압 볼밸브 설계에 관한 연구)

  • Choi, Ji Ah;Ji, Sang Won;Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.18 no.3
    • /
    • pp.23-29
    • /
    • 2021
  • Hydrogen energy is the clean energy source of the future. Ultra-high-pressure hydrogen is used in hydrogen stations, with its parts being developed. On the other hand, ultra-high-pressure ball valve, which is one of its parts, depends on overseas, with the level of domestic research on this being only about 10% of advanced technology research on this abroad. In this study, the shape of an ultra-high-pressure ball valve for a hydrogen station was designed to improve its structural strength. The valve body was designed according to distance between both processed body holes along inlet and outlet ports. The designed vale body was then analyzed using ANSYS to check whether points with stress were concentrated. In addition, the valve with improved body was analyzed to confirm that the valve satisfied the design condition.

Risk Assessment of Tube Trailer Leaks at Hydrogen Charging Station (수소충전소 튜브트레일러 누출에 따른 위험성평가)

  • Park, Woo-Il;Yoon, Jin-Hee;Kang, Seung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.57-62
    • /
    • 2021
  • In this study, risk assessment was conducted in case of leakage of storage facilities (tube trailer) using the HyKoRAM program developed through international joint research. The high-pressure gas facilities in the hydrogen filling station are divided into four main categories: storage facilities (tube trailers), processing facilities (compressors), compressed gas facilities, and filling facilities (dispensers). Among them, the design specifications of the tube trailer, which is a storage facility, and the surrounding environmental conditions were reflected to construct an accident scenario with previously occurring accidents and potential accidents. Through this, we identify the risks of storage facilities at hydrogen refueling stations and suggest measures to improve the safety of hydrogen charging stations.

Simulation for the Evaluation of Reforming Parameter Values of the Natural Gas Steam Reforming Process for a Small Scale Hydrogen-Fueling Station (소규모 수소 충전소용 천연가스 수증기 개질공정의 수치모사 및 공정 변수 값의 산정)

  • Lee, Deuk-Ki;Koo, Kee-Young;Seo, Dong-Joo;Seo, Yu-Taek;Roh, Hyun-Seog;Yoon, Wang-Lai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.12-25
    • /
    • 2007
  • Numerical simulation of the natural gas steam reforming process for on-site hydrogen production in a $H_2$ fueling station was conducted on the basis of process material and heat balances. The effects of reforming parameters on the process efficiency of hydrogen production were investigated, and set-point values of each of the parameters to minimize the sizes of unit process equipments and to secure a stable operability of the reforming process were suggested. S/C ratio of the reforming reactants was found to be a crucial parameter in the reforming process mostly governing both the hydrogen production efficiency and the stable operability of the process. The operation of the process was regarded to be stable if the feed water(WR) as a reforming reactant could evaporate completely to dry steam through HRSG. The optimum S/C ratio was 3.0 where the process efficiency of hydrogen production was maximized and the stable operability of the process was secured. The optimum feed rates of natural gas(NGR) and WR as reforming reactants and natural gas(NGB) as a burner fuel were also determined for the hydrogen production rate of $27\;Nm^3/h$.

TNT Explosion Demonstration and Computational Fluid Dynamics for Safety Verification of Protection Wall in Hydrogen Refueling Station (수소충전소 방호벽 안전성 검증을 위한 TNT 폭발실증 및 전산유동 해석)

  • Yun-Young Yang;Jae-Geun Jo;Woo-Il Park;Hyon Bin Na
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.102-109
    • /
    • 2023
  • In realizing a hydrogen society, it is important to secure the safety of the hydrogen refueling station, which is the facility where consumers can easily meet hydrogen. The hydrogen refueling station consists of compressed gas facilities that store high-pressure hydrogen, and there is a risk that the high-pressure compressed gas facility will rupture due to a fire explosion due to hydrogen leakage in the facility or the influence of surrounding fires. Accordingly, the Korea Gas Safety Corporation is making every effort to find out risk factors from the installation stage, reflect them in the design, and secure safety through legal inspection. In this study, a TNT explosion demonstration test using a protection wall was conducted to confirm the safety effect of the protection wall installed at the hydrogen refueling station, and the empirical test results were compared and verified using FLACS-CFD, a CFD program. As a result of the empirical test and CFD analysis, it was confirmed that the effect of reducing the explosion over-pressure at the rear end of the protection wall decreased from 50% to up to 90% depending on the location, but the effect decreased when it exceeded a certain distance. The results of the empirical test and computer analysis for verifying the safety of the protection wall will be used in proposals for optimizing the protection wall standards in the future.

Exergy Analysis and Optimization of Chiller System in Hydrogen Fueling Station Using R290 Refrigerant (R290 냉매를 이용한 수소 충전소 냉각시스템 엑서지 분석 및 공정 최적화)

  • HYEON, SOOBIN;CHOI, JUNGHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.356-364
    • /
    • 2021
  • During the hydrogen fueling process, hydrogen temperature inside the compressed tank were limited below 85℃ due to the allowable pressure of tank material. The chiller system to cool compressed hydrogen used R407C, greenhouse gas with a high global warming potential (GWP), as a refrigerant. To reduce greehouse gas emission, it should be replaced by refrigerant with a low GWP. This study proposes a chiller system for fueling hydrogen with R290, consisted in propane, by applying the C3 pre-cooled system use d in the LNG liquefaction process. The proposed system consisted of hydrogen compression and cooling sections and optimized the operating pressure through exergy analysis. It was also compared to the exergy efficiency with the existing system at the optimal operating pressure. The result showed that the optimal operating pressure is 700 kPa in 2-stage, 840 kPa/490 kPa in 3-stage, and the exergy efficiency increased by 17%.

The Factor Analysis for Acceptance on Hydrogen Refueling Station Using Structure Equation Model (구조방정식 모델을 이용한 수소충전소 수용에 미치는 요인분석)

  • Lee, Mi Jeong;Baek, Jong-Bae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.356-362
    • /
    • 2022
  • Research related to hydrogen technology is being actively conducted around the world. Korea is also making great efforts to develop technology to leap forward as a hydrogen economy powerhouse. In particular, the world's No. 1 hydrogen vehicle penetration rate is proof of this. However, the construction of hydrogen refueling stations is being delayed. The biggest delay factor is the public opposition. As such, policies without public support cannot be successfully implemented and are not sustainable. Therefore, this study intends to analyze the factors affecting the acceptability of hydrogen refueling stations in favor of and against them. As a research method, the basic factors affecting acceptability were identified by reviewing previous studies, and a questionnaire was designed and investigated based on the established factors. The validity and reliability of the questionnaire were verified, and the hypothesis was verified through correlation analysis. And, using structural equation modeling, a factor model was developed on the acceptability of hydrogen refueling stations. As a result of the study, acceptability defined private acceptability and public acceptability. In the case of private acceptability, it was confirmed that the higher the attitude toward the environment, the higher the level of knowledge about the hydrogen charging station, and the lower the degree of feeling the risk of the hydrogen charging station, the higher the acceptability. In the case of public acceptability, it was confirmed that the higher the benefit, the better the attitude toward the environment, and the lower the risk-taking characteristics of the individual, the higher the acceptability. Therefore, in this study, based on the potential factors verified in previous studies, the main factors affecting the acceptance on hydrogen refueling stations were identified. And the acceptance model was developed using structural equation modeling. This study is expected to provide basic data to seek ways to improve the acceptance of public when implementing national policies such as hydrogen refueling stations, and to be used analysis data for scientific communication.

HYDROGEN BEHAVIOR IN THE IRWST OF APR1400 FOLLOWING A STATION BLACKOUT

  • Kim, Han-Chul;Suh, Nam-Duk;Park, Jae-Hong
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.195-200
    • /
    • 2006
  • In order to confirm the integrity of IRWST following a severe accident, the hydrogen behavior inside and around the IRWST has been investigated for an SBO accident. A detailed containment model, including 18 control volumes for IRWST, has been developed. Analysis results show that the peak hydrogen concentration is about 57% during the core melting period. The combustion regime shows that flame acceleration and DDT are possible in the IRWST. The flame acceleration criterion is met when the peak hydrogen concentration occurs; the 7 -DDT criterion is also met during some periods. These results show certain measures may be required to assure IRWST integrity against an SBO accident.

Risk Assessment for Performance Evaluation System of Hydrogen Refueling Station (수소충전소 성능평가 장비 안전성 평가 연구)

  • KANG, SEUNGKYU;LEE, DONGHOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.3
    • /
    • pp.232-239
    • /
    • 2022
  • This study performed qualitative and quantitative risk assessment of equipment for evaluating the protocol of hydrogen refueling stations and suggested measures to improve safety. Hazard and operability study was performed for qualitative risk assessment, and Hy-KoRAM was used for quantitative risk assessment. Through a qualitative risk assessment, additional ventilation devices were installed, simultaneous venting of the storage container was prohibited, and the number of repeated refilling of the evaluation equipment was identified to manage the number of fillings of the container. Through quantitative risk assessment, the area around the device was set as a restricted area when evaluating the station, and measures were suggested to reduce the frequency of accidents.

An Investigation of Hazard Distance in a Series of Hydrogen Jet Fire with the Hyram Tools (수소 누출 시 제트화재 피해 범위에 대한 분석)

  • KANG, BYOUNG WOO;LEE, TAECK HONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.166-173
    • /
    • 2017
  • For commercialization of hydrogen refuelling station (HRS), we need to reduce the clearance distance for jet fire in the real entities in the HRS. Thus, we revisited the current regulations of clearance distance for jet fire in the law. The law in korea has been set up by replica of japan, not by our own scientific basis. Recently, sandia lab developed Hydrogen Risk Assessment Model (HyRAM) tools and we simulated a series of circumstances such as 10 to 850 bar with several leak hole sizes. In 850 bar with 10 mm diameter hole leak cases, it shows $4,981kW/m^2$ at 12 m separation from leak source and $1,774kW/m^2$ at 17 m separation from leak source. In 850 bar with 1 mm diameter leak hole, it shows $0.102kW/m^2$ at 12 m separation and $0.044kW/m^2$ at 17 m separation. Current law may be acceptable with 1 mm hole size with 850 bar.