• 제목/요약/키워드: Hydrogen Bonding Ability

검색결과 24건 처리시간 0.02초

Hydrogen Bonding Analysis of Hydroxyl Groups in Glucose Aqueous Solutions by a Molecular Dynamics Simulation Study

  • Chen, Cong;Li, Wei Zhong;Song, Yong Chen;Weng, Lin Dong;Zhang, Ning
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권7호
    • /
    • pp.2238-2246
    • /
    • 2012
  • Molecular dynamics simulations have been performed to investigate hydrogen bonding characteristics of hydroxyl groups in glucose aqueous solutions with different concentrations. The hydrogen bonding abilities and strength of different O and H atom types have been calculated and compared. The acceptor/donor efficiencies have been predicted and it has been found that: (1) O2-HO2 and O3-HO3 are more efficient intramolecular hydrogen bonding acceptors than donors; (2) O1-HO1, O4-HO4 and O6-HO6 are more efficient intramolecular hydrogen bonding donors than acceptors; (5) O1-HO1 and O6-HO6 are more efficient intermolecular hydrogen bonding acceptors than donors while hydroxyl groups O2-HO2 and O4-HO4 are more efficient intermolecular hydrogen bonding donors than acceptors. The hydrogen bonding abilities of hydroxyl groups revealed that: (1) the hydrogen bonding ability of OH2-$H_w$ is larger than that of hydroxyl groups in glucose; (2) among the hydroxyl groups in glucose, the hydrogen bonding ability of O6-HO6 is the largest and the hydrogen bonding ability of O4-HO4 is the smallest; (3) the intermolecular hydrogen bonding ability of O6-HO6 is the largest; (4) the order for intramolecular hydrogen bonding abilities (from large to small) is O2-HO2, O1-HO1, O3-HO3, O6-HO6 and O4-HO4.

Molecular Dynamics Investigation of the Effects of Concentration on Hydrogen Bonding in Aqueous Solutions of Methanol, Ethylene Glycol and Glycerol

  • Zhang, Ning;Li, Weizhong;Chen, Cong;Zuo, Jianguo;Weng, Lindong
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권9호
    • /
    • pp.2711-2719
    • /
    • 2013
  • Hydrogen bonding interaction between alcohols and water molecules is an important characteristic in the aqueous solutions of alcohols. In this paper, a series of molecular dynamics simulations have been performed to investigate the aqueous solutions of low molecular weight alcohols (methanol, ethylene glycol and glycerol) at the concentrations covering a broad range from 1 to 90 mol %. The work focuses on studying the effect of the alcohols molecules on the hydrogen bonding of water molecules in binary mixtures. By analyzing the hydrogen bonding ability of the hydroxyl (-OH) groups for the three alcohols, it is found that the hydroxyl group of methanol prefers to form more hydrogen bonds than that of ethylene glycol and glycerol due to the intra-and intermolecular effects. It is also shown that concentration has significant effect on the ability of alcohol molecule to hydrogen bond water molecules. Understanding the hydrogen bonding characteristics of the aqueous solutions is helpful to reveal the cryoprotective mechanisms of methanol, ethylene glycol and glycerol in aqueous solutions.

Hydrogen Bonds in GlcNAc( β1,3)Gal( β)OMe in DMSO Studied by NMR Spectroscopy and Molecular Dynamics Simulations

  • Shim, Gyu-Chang;Shin, Jae-Min;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권2호
    • /
    • pp.198-202
    • /
    • 2004
  • Hydrogen bond is an important factor in the structures of carbohydrates. Because of great strength, short range, and strong angular dependence, hydrogen bonding is an important factor stabilizing the structure of carbohydrate. In this study, conformational properties and the hydrogen bonds in GlcNAc( ${\beta}$1,3)Gal(${\beta}$)OMe in DMSO are investigated through NMR spectroscopy and molecular dynamics simulation. Lowest energy structure in the adiabatic energy map was utilized as an initial structure for the molecular dynamics simulations in DMSO. NOEs, temperature coefficients, SIMPLE NMR data, and molecular dynamics simulations proved that there is a strong intramolecular hydrogen bond between O7' and HO3' in GlcNAc( ${\beta}$1,3)Gal(${\beta}$)OMe in DMSO. In aqueous solution, water molecule makes intermolecular hydrogen bonds with the disaccharides and there was no intramolecular hydrogen bonds in water. Since DMSO molecule is too big to be inserted deep into GlcNAc(${\beta}$1,3)Gal(${\beta}$)OMe, DMSO can not make strong intermolecular hydrogen bonding with carbohydrate and increases the ability of O7' in GlcNAc(${\beta}$1,3)Gal(${\beta}$)OMe to participate in intramolecular hydrogen bonding. Molecular dynamics simulation in conjunction with NMR experiments proves to be efficient way to investigate the intramolecular hydrogen bonding existed in carbohydrate.

Basicity of Urea: Near-Infrared Spectroscopic and Theoretical Studies on the Hydrogen Bonding Ability of TMU and DMDPU

  • 이호진;최영상;박정희;윤창주
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권1호
    • /
    • pp.110-114
    • /
    • 1998
  • The hydrogen-bonding interactions between thioacetamide (TA) and urea derivatives such as tetramethylurea (TMU) and dimethyldiphenylurea (DMDPU) have been studied using near-infrared absorption spectroscopy. Thermodynamic parameters for the interactions between TA and urea derivatives were determined by analyzing the $v^{as}_{N-H}$+Amide Ⅱ combination band of TA at 1970 nm. The ΔH° values, indicating the intrinsic strength of hydrogen bonding, are - 23.0 kJ/mole and - 19.8 kJ/mol for TMU and DMDPU, respectively. This is well explained by the inductive effects of substituents. Ab initio molecular orbital calculations for the proton affinity of TMU, N,N-dimethylformamide (DMF), and N,N-dimethylacetamide (DMA) in gas phase have been carried out at HF/3-21G ad HF/6-31G(d) levels, showing that the proton affinity of TMU is larger than that of DMA, which agrees well the experimental results.

Solvent Dependence of Absorption and Fluorescence Spectra of Piroxicam. A Possible Intramolecular Proton Transfer in the Excited State

  • Yoon, Min-Joong;Choi, Hyong-Nae;Kwon, Hwang-Won;Park, Koon-Ha
    • Bulletin of the Korean Chemical Society
    • /
    • 제9권3호
    • /
    • pp.171-175
    • /
    • 1988
  • The spectral properties of piroxicam in different solvents are similar to those of its skeletal precursor, HMBDC. The maximum absorption and emission wavelengths strongly depend on the hydrogen bonding ability of the solvent, and it is shown that intramolecular hydrogen bonding between the -OH and the ortho carbonyl group of the parent benzothiazine ring plays an important role in the solvent-dependence of their spectroscopic properties. The fluorescence spectra in aprotic nonpolar solvent exhibit abnormally large Stokes-shifted (${\sim}9,000cm^{-1}$) emission bands in contrast to the spectra in water. In ethanol, dual emission bands with two different fractional components of lifetimes have been observed. These results suggest that the abnormally red-shifted emission is attributed to the proton transferred form of an intramolecularly hydrogen-bonded closed conformer.

Physical Properties of Agro-Flour Filled Aliphatic Thermoplastic Polyester Bio-Composites

  • Eom, Young Geun;Kim, Hee Soo;Yang, Han Seung;Kim, Hyun Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제32권3호
    • /
    • pp.71-78
    • /
    • 2004
  • The purpose of this study was to investigate the water absorption and thickness swelling of biocomposites at room temperature. These properties of bio-composites mainly depend on the ability of the agro-flour to absorb water through hydrogen bonding between water and the hydroxyl groups of the holocellulose and lignin in the cell wall. As the content of agro-flour increased, the water absorption and thickness swelling of the bio-composites increased. The effects of agro-flour content and rice husk flour (RHF) particle size on the water absorption and thickness swelling of the bio-composites were evaluated. In general, wood-based materials showed significantly higher water absorption and thickness swelling than the bio-composites. This might be attributed to the ability of the polybutylene succinate (PBS) hydrophobic polymer to prohibit the water absorption and thickness swelling of the bio-composites, Therefore, the use of agro-flour filled PBS bio-composites, which exhibit improved dimensional stability in comparison with wood-based materials, is recommended.

Photophysical properties of Khellin

  • Shim, Sang-Chul;Kang, Ho-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • 제8권4호
    • /
    • pp.341-344
    • /
    • 1987
  • The fluorescence quantum yield of khellin is sensitive to temperature and to the nature of solvents, especially the proton-donating ability in solute-to-solvent hydrogen bonding. The intersystem crossing quantum yields are 0.4 and 0.15 in acetonitrile and ethanol, respectively. The fluorescence quantum yields in ethanol and isopentane at 77 K are 0.61 and 0.07, respectively, both of which are much larger than the values at room temperature. The phosphorescence lifetime is relatively long and decreases with decreasing solvent polarity. The phosphorescence to fluorescence quantum yield ratio is very small and remains unchanged in various solvents. The results suggest that internal conversion is an important decay channel of the excited singlet state of khellin, especially in the hydrogen-bonding hydroxyl solvents.

Ethylene Glycol 유사체가 탈회된 상아질의 물리적 성질에 미치는 영향 (THE EFFECT OF ETHYLENE GLYCOL ANALOGS ON MECHANICAL PROPERTIES OF MOIST DEMINERALIZED DENTIN MATRIX)

  • 이경하;조영곤;이광원
    • Restorative Dentistry and Endodontics
    • /
    • 제31권4호
    • /
    • pp.290-299
    • /
    • 2006
  • 본 연구에서는 상아질의 항복인장강도 (UTS)나 탄성계수 (E)와 같은 물리적 특성이 적용된 용매틀의 각각에 대한 Hoy의 수소결합 용해도 매개변수에 반비례한다는 가설을 설정하고 실험한 결과 가설이 입증되었으며 이를 토대로 다음과 같은 결론을 유도하여 보았다. 첫째는 탈회된 상아질의 인장 특성 및 물성이 가해진 극성 용매의 수소결합능에 밀접히 연관되어 있다는 것이며, 둘째는 낮은 수소결합능을 가진 용매는 교원섬유 층 내에서 새로운 펩타이드간 수소결합을 유도함으로써 탈회된 상아질의 인장력 및 탄성계수를 증가시킨다는 결과이다. 셋째로는 이러한 결과들을 토대로 높은 수소결합능을 가진 용매들은 새로운 펩타이드간 수소결합의 형성을 차단하여 탈회된 상아질의 구조적 특성을 유지시킬 수 있다는 결론을 도출하였다.

티오프로피온 아미드의 수소 결합 능력에 대한 근 적외선 분광학 연구 (The Near Infrared Spectroscopic Studies on the Hydrogen Bonding Ability of Thiopropionamide)

  • 주설아;박정희;윤창주;최영상
    • 대한화학회지
    • /
    • 제39권11호
    • /
    • pp.837-841
    • /
    • 1995
  • 사염화탄소 속에서 티오프로피온아미드(TPA)와 triethylphosphine oxide(TEPO), triethylphosphine oxide(TPPO), trimethylphosphate(TMP), 그리고 tributyl phosphate(TBP)간의 수소 결합에 대한 열역학적 상수들을 근적외선 분광법을 이용하여 구하였다. TPA의 .nu./.alpha./+amide 2 조합띠는 TPA 단위체 및 수소 결합을 이룬 TPA의 띠로 이루어져 있음이 확인되어 이 띠를 두 개의 Lorentzian-Gaussian 곱함수의 띠로 분해하였다. 온도 및 농도의 변화에 따른 이 조합띠의 변화기로부터 TPA와 TEPO, TPPO, TMP, TBP의 수소 결합 엔탈피는 각각 -21.4, -16.8, -12.8, -12.9kJ/mol이었다. 이 결과는 치환기의 inductive effect 및 steric effect로 설명할 수 있다.

  • PDF

Preparation of Molecularly Imprinted Polymers Using Photocross-linkable Polyphosphazene and Selective Rebinding of Amino Acids

  • Lee, Seung-Cheol;Chang, Ji-Young
    • Macromolecular Research
    • /
    • 제17권7호
    • /
    • pp.522-527
    • /
    • 2009
  • A photocrosslinkable polyphosphazene was used for molecular imprinting. We synthesized polyphosphazene (3) having urea groups for complexation with N-carbobenzyloxyglycin (Z-Gly-OH, template) and chalcone groups for cross-linking reaction. As substituents, 4-hydroxycha1cone (1) and N-(4-hydroxyphenyl)-N'-ethylurea (2) were prepared. Choloro groups of poly(dichlorophosphazene) were replaced by the sequential treatment with sodium salts of compounds 1 and 2, and trifluoroethanol. The template molecule was complexed with the urea groups on the polymer chains via hydrogen bonding. A thin polymer film was prepared by casting a solution of the complex of polymer 3 and the template in dimethylformamide on a quartz cell and irradiated with 365 nm UV light to yield a cross-linked film with a thickness of about $16{\mu}m$. The template molecules in the film were removed by Soxhlet extraction with methanol/acetic acid. The control polymer film was prepared in the same manner for the preparation of the imprinted polymer film, except that the template and triethylamine were omitted. In the rebinding test, the imprinted film exhibited much higher recognition ability for the template than the control polymer. We also investigated the specific recognition ability of the imprinted polymer for the template and its structural analogues. The rebinding tests were conducted using Z-Glu-OH, Z-Asp($O^tBu$)-OH, and Z-Glu-OMe. The imprinted film showed higher specific recognition ability for the template and the lowest response for Z-Asp($O^tBu$)-OH.