• 제목/요약/키워드: Hydrogen Bond

검색결과 593건 처리시간 0.024초

Conformations and Vibrational Frequencies of a Precursor of Benzovesamicol Analogues Studied by Density Functional Theories

  • Park, Jong-Kil;Choe, Sang Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2311-2316
    • /
    • 2014
  • Conformations and vibrational frequencies of the racemic (2RS,3RS)-5-amino-3-(4-phenylpiperazin-1-yl)-1,2,3,4-tetrahydronaphthalen-2-ol-(I) [(2RS,3RS)-(I)], a precursor of benzovesamicol analogues, have been carried out using various DFT methods (M06-2X, B3LYP, B3PW91, PBEPBE, LSDA, and B3P86) with basis sets of 6-31G(d), 6-31+G(d,p), 6-311+G(d,p), 6-311++G(d,p), cc-pVTZ, and TZVP. The LSDA/6-31G(d) level of theory shows the best performance in reproducing the X-ray powder structure. However, the PBEPBE/cc-pVTZ level of theory is the best method to predict the vibrational frequencies of (2RS,3RS)-(I). The potential energy surfaces of racemic pairs (2RS,3RS)-(I) and -(II) are obtained at the LSDA/6-31G(d) level of theory in the gas phase and in water. The results indicate that (2RS,3RS)-(I) are more stable by ~0.75 kcal/mol in energy than (2RS,3RS)-(II) in water, whereas conformer AIIg and BIIg are more stable by ~0.04 kcal/mol than AIg in gas phase. In particular, the hydrogen bond distances between the N of piperazine and the OH of tetrahydronaphthalen become longer in gas, compared with those in the water phase. Vibrational frequencies calculated at the PBEPBE/cc-pVTZ level of theory in the gas phase are larger than those in water, whereas their intensities in the gas phase are weaker than those in water.

Theoretical Characterization of Binding Mode of Organosilicon Inhibitor with p38: Docking, MD Simulation and MM/GBSA Free Energy Approach

  • Gadhe, Changdev G.;Balupuri, Anand;Kothandan, Gugan;Cho, Seung Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2494-2504
    • /
    • 2014
  • P38 mitogen activated protein (MAP) kinase is an important anti-inflammatory drug target, which can be activated by responding to various stimuli such as stress and immune response. Based on the conformation of the conserved DFG loop (in or out), binding inhibitors are termed as type-I and II. Type-I inhibitors are ATP competitive, whereas type-II inhibitors bind in DFG-out conformation of allosteric pocket. It remains unclear that how these allosteric inhibitors stabilize the DFG-out conformation and interact. Organosilicon compounds provide unusual opportunity to enhance potency and diversity of drug molecules due to their low toxicity. However, very few examples have been reported to utilize this property. In this regard, we performed docking of an inhibitor (BIRB) and its silicon analog (Si-BIRB) in an allosteric binding pocket of p38. Further, molecular dynamics (MD) simulations were performed to study the dynamic behavior of the simulated complexes. The difference in the biological activity and mechanism of action of the simulated inhibitors could be explained based on the molecular mechanics/generalized Born surface area (MM/GBSA) binding free energy per residue decomposition. MM/GBSA showed that biological activities were related with calculated binding free energy of inhibitors. Analyses of the per-residue decomposed energy indicated that van der Waals and non-polar interactions were predominant in the ligand-protein interactions. Further, crucial residues identified for hydrogen bond, salt bridge and hydrophobic interactions were Tyr35, Lys53, Glu71, Leu74, Leu75, Ile84, Met109, Leu167, Asp168 and Phe169. Our results indicate that stronger hydrophobic interaction of Si-BIRB with the binding site residues could be responsible for its greater binding affinity compared with BIRB.

타닌산-전이 금속-고분자로 구성된 젤의 단일 단계 합성과 점착제로의 이용 (One-step Fabrication of a Tannic Acid-Transition Metal-Polymer Gel as a Pressure-Sensitive Adhesive)

  • 이재홍;이경문;최시영
    • Korean Chemical Engineering Research
    • /
    • 제58권2호
    • /
    • pp.176-183
    • /
    • 2020
  • 이 연구에서는 작은 유기 분자 말단의 하이드록실기와 전이 금속 사이의 배위 결합을 통해 고분자와 유사하게 연결된 복합체를 제작하고, 점착 부여제를 추가하여 해당 물질의 점착제로의 사용 가능성을 확인하였다. 점착제 합성에 사용한 타닌산(tannic acid, TA)은 하이드록실기를 풍부하게 보유하고 있어 전이 금속과는 배위 결합이 가능하고 친수성 고분자와는 수소 결합이 가능하다. 위의 성질을 이용하여 타닌산과 전이 금속, 고분자 세 가지 성분을 한 번에 간단히 섞어 기판에 잘 펴지며 점착 능력을 보유한 특별한 유변 물성을 가지는 물질을 제작하였다. 합성에 사용한 전이 금속의 종류(Fe3+, Ti4+), 고분자의 종류, 처리 조건 등에 따른 유변 물성의 변화를 확인하는 과정을 통해 점착제로 사용하기에 가장 적합한 성분의 조합을 발견하였으며, 인체에 무해하며 높은 응집력과 접착력을 보유한 다목적 점착제로의 사용 가능성을 확인하였다.

Material Properties and Compressibility Using Heckel and Kawakita Equation with Commonly Used Pharmaceutical Excipients

  • Choi, Du-Hyung;Kim, Nam-Ah;Chu, Kyung-Rok;Jung, Youn-Jung;Yoon, Jeong-Hyun;Jeong, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권4호
    • /
    • pp.237-244
    • /
    • 2010
  • This study investigated basic material properties and compressibility of commonly used pharmaceutical excipients. Five classes of excipients are selected including starch, lactose, calcium phosphate, microcrystalline cellulose (MCC), and povidone. The compressibility was evaluated using compression parameters derived from Heckel and Kawakita equation. The Heckel plot for lactose and dicalcium phosphate showed almost linear relationship. However, for MCC and povidone, curves in the initial phase of compression were observed followed by linear regions. The initial curve was considered as particle rearrangement and fragmentation and then plastic deformation at the later stages of the compression cycle. The Kawakita equation showed MCC exhibited higher compressibility, followed by povidone, lactose, and calcium phosphate. MCC undergoes significant plastic deformation during compression bringing an extremely large surface area into close contact and facilitating hydrogen bond formation between the plastically deformed, adjacent cellulose particles. Lactose compacts are consolidated by both plastic deformation and fragmentation, but to a larger extent by fragmentation. Calcium phosphate has poor binding properties because of its brittle nature. When formulating tablets, selection of suitable pharmaceutical excipients is very important and they need to have good compression properties with decent powder flowability. Material properties tested in this study might give a good guide how to select excipients for tablet formulations and help the formulation scientists design the optimum ones.

Control of Plasma Characteristic to Suppress Production of HSRS in SiH4/H2 Discharge for Growth of a-Si: H Using Global and PIC-MCC Simulation

  • 원임희;권형철;홍용준;이재구
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.312-312
    • /
    • 2011
  • In SiH4/H2 discharge for growth process of hydrogenated amorphous silicon (a-Si:H), silane polymers, produced by SiH2 + Sin-1H2n ${\rightarrow}$ SinH2n+2, have no reactivity on the film-growing surface. However, under the SiH2 rich condition, high silane reactive species (HSRS) can be produced by electron collision to silane polymers. HSRS, having relatively strong reactivity on the surface, can react with dangling bond and form Si-H2 networks which have a close correlation with photo-induced degradation of a-Si:H thin film solar cell [1]. To find contributions of suggested several external plasma conditions (pressure, frequency and ratio of mixture gas) [2,3] to suppressing productions of HSRS, some plasma characteristics are studied by numerical methods. For this study, a zero-dimensional global model for SiH4/H2 discharge and a one-dimensional particle-in-cell Monte-Carlo-collision model (PIC-MCC) for pure SiH4 discharge have been developed. Densities of important reactive species of SiH4/H2 discharge are observed by means of the global model, dealing 30 species and 136 reactions, and electron energy probability functions (EEPFs) of pure SiH4 discharge are obtained from the PIC-MCC model, containing 5 charged species and 15 reactions. Using global model, SiH2/SiH3 values were calculated when pressure and driving frequency vary from 0.1 Torr to 10 Torr, from 13.56 MHz to 60 MHz respectively and when the portion of hydrogen changes. Due to the limitation of global model, frequency effects can be explained by PIC-MCC model. Through PIC-MCC model for pure SiH4, EEPFs are obtained in the specific range responsible for forming SiH2 and SiH3: from 8.75 eV to 9.47 eV [4]. Through densities of reactive species and EEPFs, polymerization reactions and production of HSRS are discussed.

  • PDF

질산산화법을 이용한 SiO2/Si 구조의 계면결함 제거 (Removal of Interface State Density of SiO2/Si Structure by Nitric Acid Oxidation Method)

  • 최재영;김도연;김우병
    • 한국재료학회지
    • /
    • 제28권2호
    • /
    • pp.118-123
    • /
    • 2018
  • 5 nm-thick $SiO_2$ layers formed by plasma-enhanced chemical vapor deposition (PECVD) are densified to improve the electrical and interface properties by using nitric acid oxidation of Si (NAOS) method at a low temperature of $121^{\circ}C$. The physical and electrical properties are clearly investigated according to NAOS times and post-metallization annealing (PMA) at $250^{\circ}C$ for 10 min in 5 vol% hydrogen atmosphere. The leakage current density is significantly decreased about three orders of magnitude from $3.110{\times}10^{-5}A/cm^2$ after NAOS 5 hours with PMA treatment, although the $SiO_2$ layers are not changed. These dramatically decreases of leakage current density are resulted from improvement of the interface properties. Concentration of suboxide species ($Si^{1+}$, $Si^{2+}$ and $Si^{3+}$) in $SiO_x$ transition layers as well as the interface state density ($D_{it}$) in $SiO_2/Si$ interface region are critically decreased about 1/3 and one order of magnitude, respectively. The decrease in leakage current density is attributed to improvement of interface properties though chemical method of NAOS with PMA treatment which can perform the oxidation and remove the OH species and dangling bond.

나노 자철광의 표면전하에 따른 Poly(acrylic acid) 수화젤의 물성 (Properties of Poly(acrylic acid) Hydrogel by the Surface Charge of Magnetite Nanoparticles)

  • 서동필;강휘원;정창남
    • 폴리머
    • /
    • 제30권5호
    • /
    • pp.412-416
    • /
    • 2006
  • $FeCl_3$$Na_2SO_3,\;NH_4OH$에 의해 제조된 나노 자철광은 강자성체로 화학 흡착에 의해 형성된 표면의 수산기에 의해 표면전하가 변하는 특성이 있다. 본 연구는 이런 나노 자철광을 함유한 poly(acrylic acid) (PAAc) 수화젤의 물성에 대하여 연구하였다. 나노 자철광의 특성은 XRD, AFM, FTIR로 측정하였다. 나노 자철광 표면의 제타전위는 pH 변화에 의해 큰 영향을 받았으며, pH 4 이하에서는 높은(+)전위를 나타내었으며, 등전점은 pH 7에서 확인되었다. pH 4 이하에서 나노 자철광 콜로이드를 PAAc 수화젤에 함유시키면, 강력한 수소결합이 형성되어 젤의 인장강도는 증가하고, 신율 및 팽윤비는 감소하여 기계적인 물성이 증가하였다. 나노 자철광의 함량에 비례하여 나노 자철광을 함유한 PAAc 수화젤의 자기이력은 증가하였다.

Functionalized Emulsion Styrene-Butadiene Rubber Containing Diethylaminoethyl Methacrylate for Silica Filled Compounds

  • Park, Jinwoo;Kim, Kihyun;Lim, Seok-Hwan;Hong, Youngkun;Paik, Hyun-jong;Kim, Wonho
    • Elastomers and Composites
    • /
    • 제50권2호
    • /
    • pp.110-118
    • /
    • 2015
  • In this study, diethylaminoethyl methacrylate-styrene-butadiene terpolymer (DEAEMA-SBR), in which diethylaminoethyl methacrylate (DEAEMA) was introduced to the SBR molecule as a third monomer, was synthesized by cold emulsion polymerization. It is expected that amine group introduced to a rubber molecule would improve dispersion of silica by the formation of hydrogen bond (or ionic coupling) between the amine group and silanol groups of silica surface. The chemical structure of DEAEMA-SBR was analyzed using proton nuclear magnetic resonance spectroscopy (H-NMR), Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). Then, various properties of DEAEMA-SBR/silica composite such as crosslink density, bound rubber content, abrasion resistance, and mechanical properties were evaluated. As a result, bound rubber content and crosslink density of DEAEMA-SBR/silica compound were higher than those of the SBR 1721 composite. Abrasion resistance and moduli at 300% elongation of the DEAEMA-SBR/silica composite were better than those of SBR 1721 composite due to the high bound rubber content and crosslink density. These results are attributed to high affinity between DEAEMA-SBR and silica. The proposed study suggests that DEAEMA-SBR can help to improve mechanical properties and abrasion resistance of the tire tread part.

Pharmacophore Design for Anti-inflammatory Agent Targeting Interleukin-2 Inducible Tyrosine Kinase (Itk)

  • Chandrasekaran, Meganathan;Sakkiah, Sugunadevi;Thangapandian, Sundarapandian;Namadevan, Sundaraganesan;Kim, Hyong-Ha;Kim, Yong-Seong;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3333-3340
    • /
    • 2010
  • A three dimensional pharmacophore model was generated for the molecules which are responsible for anti-inflammatory activities targeting Interleukin-2 inducible tyrosine kinase (Itk). 16 structurally diverse molecules were selected as training set to generate the hypotheses using Discovery Studio v2.1. The best hypothesis, Hypo1, comprises two hydrogen bond acceptor (HBA), one hydrophobic aromatic (HA), one ring aromatic (RA) and shows high cost difference (63.71), high correlation coefficient (0.97) as well as low RMS deviation (0.81). Hypo1 has been further validated toward a test set, decoy set and Fischer's randomization method. Furthermore, Hypo1 was used to screen NCI and Maybridge databases. Finally, 2 hit molecules were identified as potential leads against Itk, which may be useful for future drug development.

Homology Modeling and Docking Study of β-Ketoacyl Acyl Carrier Protein Synthase Ⅲ from Enterococcus Faecalis

  • Jeong, Ki-Woong;Lee, Jee-Young;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권8호
    • /
    • pp.1335-1340
    • /
    • 2007
  • β-Ketoacyl acyl carrier protein synthase (KAS) III is a particularly attractive target in the type II fatty acid synthetic pathway, since it is central to the initiation of fatty acid synthesis. Enterococcus faecalis, a Grampositive bacterium, is one of the major causes of hospital acquired infections. The rise of multidrug-resistant of most bacteria requires the development of new antibiotics, such as inhibition of the KAS III. In order to block the fatty acid synthesis by inhibition of KAS III, at first, three dimensional structure of Enterococcus faecalis KAS III (efKAS III) was determined by comparative homology modeling using MODELLER based on x-ray structure of Staphylococcus aureus KAS III (saKAS III) which is a gram-positive bacteria and is 36.1% identical in amino acid sequences with efKAS III. Since His-Asn-Cys catalytic triad is conserved in efKAS III and saKAS III, substrate specificity of efKAS III and saKAS III and the size of primer binding pocket of these two proteins are expected to be similar. Ligand docking study of efKAS III with naringenin and apigenin showed that naringenin docked more strongly with efKAS III than apigenin, resulting in the intensive hydrogen bond network between naringenin and efKAS III. Also, only naringenin showed antibacterial activity against E. faecalis at 256 μg/mL. This study may give practical implications of flavonoids for antimicrobial effects against E. faecalis.