Properties of Poly(acrylic acid) Hydrogel by the Surface Charge of Magnetite Nanoparticles

나노 자철광의 표면전하에 따른 Poly(acrylic acid) 수화젤의 물성

  • Seo Dong-Pil (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Kang Hwi-Won (ACE Inudstries CO. LTD.) ;
  • Jeong Chang-Nam (Department of Polymer Science and Engineering, Sunchon National University)
  • 서동필 (순천대학교 고분자공학과) ;
  • 강휘원 (에이스인더스트리(주)) ;
  • 정창남 (순천대학교 고분자공학과)
  • Published : 2006.09.01

Abstract

The superparamagnetic nanoparticles were prepared by coprecipitation of $FeCl_3$ and $Na_2SO_3$ with $NH_4OH$ and the surface charge on hydroxyl group by chemisorption was changed depending on pH. We studied correlation between surface charge of magnetite and pH. Using this correlation the properties of poly (acrylic acid) (PAAc) hydrogel embedded with magnetite was studied. The magnetite was characterized by XRD, AFM. and FTIR. The zeta-potential of magnetite was influenced by pH: great positive charge was shown high under the pH 4 and isoelectric point was found at pH 7. The hydrogen bond formed by combining oi PAAc hydrogel and magnetic colloid under pH 4 caused tensile strength to increase, while swelling and elongation at break to decrease. The result confirmed that the magnetic moment was increased proportionally to the content of magnetite.

$FeCl_3$$Na_2SO_3,\;NH_4OH$에 의해 제조된 나노 자철광은 강자성체로 화학 흡착에 의해 형성된 표면의 수산기에 의해 표면전하가 변하는 특성이 있다. 본 연구는 이런 나노 자철광을 함유한 poly(acrylic acid) (PAAc) 수화젤의 물성에 대하여 연구하였다. 나노 자철광의 특성은 XRD, AFM, FTIR로 측정하였다. 나노 자철광 표면의 제타전위는 pH 변화에 의해 큰 영향을 받았으며, pH 4 이하에서는 높은(+)전위를 나타내었으며, 등전점은 pH 7에서 확인되었다. pH 4 이하에서 나노 자철광 콜로이드를 PAAc 수화젤에 함유시키면, 강력한 수소결합이 형성되어 젤의 인장강도는 증가하고, 신율 및 팽윤비는 감소하여 기계적인 물성이 증가하였다. 나노 자철광의 함량에 비례하여 나노 자철광을 함유한 PAAc 수화젤의 자기이력은 증가하였다.

Keywords

References

  1. M. Doi, M. Matsumoto, and Y. Hirose, Macromolecules, 25, 5504 (1992) https://doi.org/10.1021/ma00046a058
  2. S. Y. Kim, S. M. Cho, Y, M, Lee, and S. J. Kim, J. Appl. Polym. Sci., 78, 1381 (2000) https://doi.org/10.1002/1097-4628(20001114)78:7<1381::AID-APP90>3.0.CO;2-M
  3. X. Z. Shu, K J. Zhu, and W. Song, Int. J. Pharm., 212, 19 (2001) https://doi.org/10.1016/S0378-5173(00)00582-2
  4. A. Richter, A. Bund, M. Keller, and K.-F. Arndt, Sensor. Actuat. B-Chem., 99, 5799 (2004)
  5. H. C. Chiu, Y. F. Lin, and Y. H. Hsu, Biomaterials, 23, 1103 (2002) https://doi.org/10.1016/S0142-9612(01)00222-8
  6. M. Dio, M. Matssumoto, and Y. Hirose, Macromolecules, 25, 5504 (1992) https://doi.org/10.1021/ma00046a058
  7. T. Shiga, 'Advances in Polymer Science', in Deformation and Viscoelastic Behavior of Polymer Gels in Electric Fields, Springer-Verlag GmbH, Vol. 134, 131 (1997)
  8. M. Kohl, D. Brugger, M. Ohtsuka, and T. Takagi, Sensor. Actuat. A-Phys., 114, 445 (2004) https://doi.org/10.1016/j.sna.2003.11.006
  9. P. Farber and H. Kronmuller, J. Magn. Magn. Mater., 214, 159 (2000) https://doi.org/10.1016/S0304-8853(00)00164-5
  10. Y. Bar-Cohen, Electroactive Polymer [EAP] Actuators as Artificial Muscles, SPIE, Washington, 2001
  11. S. M. Aharoni, Synthesis, Characterization, and Theory of Polymeric Network and Gels, Plenum US, New York, 1992
  12. K. Makino, Y. Fujita, K. Takao, S. Kobayashi, and H. Ohshima, Colloid Surface B, 21, 259 (2001) https://doi.org/10.1016/S0927-7765(00)00191-0
  13. S. J. Kim, H. I. Kim, S. J. Park, and S. I. Kim, Sensor. Actuat. A-Phys., 115, 146 (2004) https://doi.org/10.1016/j.sna.2004.04.020
  14. L. M. Schwarte and N. A. Peppas, Polymer, 39, 6057 (1998) https://doi.org/10.1016/S0032-3861(98)00087-1
  15. Y. Yang and Jan B. F. N. Engberts, Physicochemical and Engineering Aspects, 169, 85 (2000) https://doi.org/10.1016/S0927-7757(00)00420-9
  16. I. J. Kim, H. W. Kang, and C. N Jeong, Polymer(Korea), 27, 195 (2003) https://doi.org/10.1016/0032-3861(86)90326-5
  17. M. Zrinyi, L. Barsi, and A.Buki, Polym, Gels Netw., 5, 415 (1997) https://doi.org/10.1016/S0966-7822(97)00010-5
  18. M. Zrinyi, D. Szabo, and H. G. Kilian, Polym. Gels Netw., 6, 441 (1998) https://doi.org/10.1016/S0966-7822(98)00033-1
  19. D. Szabo, G. Szeghy, and M. Zrinyi, Marcromolecules, 31, 6541 (1998) https://doi.org/10.1021/ma980284w
  20. P. A. Dresco, V. S. Zaitsev, R. J. Gambino, and B. Chu, Langmuir, 15, 1945 (1999) https://doi.org/10.1021/la980971g
  21. R. Hiergeist, W. Andra, N. Buske, R. Hergt, I. Hilger, U. Richter, and W. Kaiser, J. Magn. Magn. Mater., 201, 420 (1999) https://doi.org/10.1016/S0304-8853(99)00145-6
  22. F.Y. Cheng, C. H. Su, Y. S. Yang, C. C.Yeh, C. Y. Tsai, C. L. Wu, M. T. Wu, and D. B. Shieh, Biometeriels, 26, 729 (2005) https://doi.org/10.1016/j.biomaterials.2004.03.016
  23. J. M. Gallo and E. Eldin Hassan, Pharmaceut. Res., 5. 300 (1998) https://doi.org/10.1023/A:1015978704810
  24. B. F. Pan, F. Gao, and H. C. Gu, J. Colloid Interf. Sci., 284, 1 (2005) https://doi.org/10.1016/j.jcis.2004.09.073
  25. S. Qu, H. Yang, D. Ren, S. Kan, G. Zou, D. Li, and M. Li, J. Colloid Interf. Sci., 215, 190 (1999) https://doi.org/10.1006/jcis.1999.6185
  26. F. J. Micale and K., Zettlemoyer, J. Colloid Interf. Sci., 105, 570 (1985) https://doi.org/10.1016/0021-9797(85)90332-7
  27. J. P. Jolivet, Metal OXIde Chemistry and Synthesis. John Wiley & Sons, New York, 2000