• Title/Summary/Keyword: Hydrogel

Search Result 596, Processing Time 0.022 seconds

Modulation of Hyaluronic Acid Properties by Electron Beam Irradiation (전자선 조사를 이용한 히알루론산의 특성 조절)

  • Shin, Young Min;Kim, Woo-Jin;Kim, Yong-Soo;Jo, Sun-Young;Park, Jong-Seok;Gwon, Hui-Jeong;Lim, Youn-Mook;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.159-164
    • /
    • 2011
  • A variety of natural polymers have been used as tissue engineering scaffolds, drug delivery system, and cosmetic materials due to their higher biocompatibility and water uptake. As a major component of extracellular matrix, hyaluronic acid consisting of D-glucuronic acid and N-acetylglucosamine has been popularly used as a hydrogel material. Even though it has good properties to be used in the tissue engineering and cosmetic industry, its higher viscosity has limited a potential use in a variety of applications; only low content should be applied in preparing above products. In the present study, we investigated the effect of electron beam irradiation on the properties of hyaluronic acid. Hyaluronic acid paste containing low contents of water changed to solution after electron beam irradiation ranging from 1 to 10 kGy, which didn't exhibit any alteration of surface properties and morphological change after freeze-drying. However, its viscosity was significantly decreased as absorbed dose increased, which was approximately one by hundred in comparison with the viscosity of original hyaluronic acid solution with same concentration. In addition, it can still interact with positive charged chitosan generating polyelectrolyte complex. Therefore, only viscosity was decreased after electron beam irradiation, whereas other properties of hyaluronic acid maintained. Consequently, these hyaluronic acids with lower viscosities can be used in a variety of applications in tissue engineering, drug delivery, and cosmetic industry.

Amoebicidal Effect of Nephrite-containing Contact Lens Storage Case (연옥이 첨가된 콘택트렌즈 보관용기의 항아메바 효과)

  • Jung, Jae Woo;Lee, Jong Heon;Park, Sung Hee;Yu, Hak Sun;Kim, Yoon Kyung;Lee, Ji-Eun
    • Journal of The Korean Ophthalmological Society
    • /
    • v.58 no.5
    • /
    • pp.509-515
    • /
    • 2017
  • Purpose: To compare the amoebicidal effects of nephrite containing contact lens (CL) storage cases with conventional CL storage cases. Methods: Acanthamoeba lugdunensis were inoculated onto 5% nephrite containing CL storage cases as well as conventional CL storage cases both with and without silicone hydrogel contact lenses (SHCLs). Then the amount of Acanthamoeba proliferation on CL storage cases and the number of adherent Acanthamoeba on SHCLs were determined and compared. The effects of multipurpose solution (MPS) with and without 1% or 5% nephrite solution on Acanthamoeba adhesion were analyzed. Results: Nephrite containing CL storage cases showed more inhibitory effects on Acanthamoeba proliferation (p = 0.02) and significantly reduced the number of adherent Acanthamoeba on SHCLs compared with conventional CL storage cases, regardless of SHCLs generation (p = 0.001, p = 0.001 and p < 0.001, respectively). The number of adherent Acanthamoeba on the first generation of SHCLs was significantly reduced by MPS with 1% and 5% nephrite solutions (p = 0.03 and p = 0.004, respectively), but the numbers for the second and third generation SHCLs were not. Conclusions: Nephrite could be used as a new additive component for CL storage cases and multipurpose solutions to improve the disinfection effects on Acanthamoeba.

Development of a Centrifugal Microreactor for the Generation of Multicompartment Alginate Hydrogel (다중 알긴산 입자제조를 위한 원심력 기반 미세유체 반응기 개발)

  • Ju-Eon, Jung;Kang, Song;Sung-Min, Kang
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.23-29
    • /
    • 2023
  • Microfluidic reactors have been made to achieve significant development for the generation of new functional materials to apply in a variety of fields. Over the last decade, microfluidic reactors have attracted attention as a user-friendly approach that is enabled to control physicochemical parameters such as size, shape, composition, and surface property. Here, we develop a centrifugal microfluidic reactor that can control the flow of fluid based on centrifugal force and generate multifunctional particles of various sizes and compositions. A centrifugal microfluidic reactor is fabricated by combining microneedles, micro- centrifuge tubes, and conical tubes, which are easily obtained in the laboratory. Depending on the experimental control param- eters, including centrifuge rotation speed, alginate concentration, calcium ion concentration, and distance from the needle to the calcium aqueous solution, this strategy not only enables the generation of size-controlled microparticles in a simple and reproducible manner but also achieves scalable production without the use of complicated skills or advanced equipment. Therefore, we believe that this simple strategy could serve as an on-demand platform for a wide range of industrial and academic applications, particularly for the development of advanced smart materials with new functionalities in biomedical engineering.

Retention Characteristics of Tc-99m-Pullulan-Derivatives in CT26 Tumor of Mice (마우스 CT26 종양에서 Tc-99m 표지 플루란유도체의 저류 특성)

  • Heo, Young-Jun;Song, Ho-Chun;Bom, Hee-Seung;Na, Kun;Kim, Seong-Min
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.6
    • /
    • pp.393-401
    • /
    • 2003
  • Objective: Pullulan derivatives (PD) can be used to make self-assembled hydrogel nanoparticles which are responsive to ionic strength. The aim of this study is to evaluate the potential of PD as a retaining carrier of radioisotope inside tumors. Materials and Methods: Four types of PD were evaluated which included pullulan acetate (PA), succinylated PA (SPA), PA-DTPA and SPA-DTPA conjugates. They were radiolabeled with Tc-99m. Labelling efficiencies were determined at 30 min, 1, 2, 4 and 12 hours after radiolabeling. CT-25 colon cancer cells were subcutaneously injected into Balb/c mice. After 2 weeks of subcutaneous injection, Tc-99m-labelled PD (Tc-99m-PD) were injected into the tumors. Whole body images of mice were obtained at 30 min, 1, 2, and 12 hr after intratumoral injection. All twenty mice were grouped into four groups by largest diameter; control A (largest diameter = 5 mm, n = 5), control B (largest diameter = 10 mm, n = 5), pullulan A (largest diameter = 5 mm, n = 5), pllulan B (largest diameter = 10 mm, n = 5). Dynamic images were obtained for 1 hour after intratumoral injection. Static images were obtained at 1 hr, 2 hr, 3 hr and 4 hr after intratumoral injection with Tc-99m pertechnetate and Tc-99m-PA. Target-to-background ratios and retention rates were calculated. Results: Labeling efficiencies of PA, SPA, PA-DTPA and SPA-DTPA were $94.5{\pm}5.9%,\;97.8{\pm}3.5%\;94.2{\pm}3.8%,\;and\;92.5{\pm}6.2%$, respectively (p>0.05). Percent retention rates (%RR) of PA and PA-DTPA were significantly higher than those of control, however, those of SP-DTPA and SPA became similar to control at 4 and 12 hr, respectively. %RR of pullulan A and pullulan B at 1, 4 and 8 hr is significantly higher than that of control (p < 0.05). However, %RR between pullulan A and pullulan B were similar. Conclusion: The lonic strength dependent PD-nanoparticles are retained in the tumor. No difference of %RR according to tumor size was noted. Therapeutic application of PD labelled with beta- or alpha- emitting radionuclides can be expected.

Characteristics of Salt Adsorption by Calcium Alginate Beads (칼슘알긴산비드에 의한 염분의 흡착특성)

  • 방병호;서정숙
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.2
    • /
    • pp.89-96
    • /
    • 2002
  • The adsorption characteristics of sodium chloride into Ca-alginate beads have been investigated and the result were as follows: Sodium chloride uptake by Ca-alginate beads increased with time. The highest uptake volume of sodium chloride was 4.2g after 10 minutes. The uptake volume by Fe, Ca, Ba, and Sr-alginate beads was 5.6g, 4.2g, 4.2g and 4.0g, respectively but in case of Fe-alginate beads, the induced hydrogel beads were very fragile and the strength of Fe-alginate beads were weaker than Ca- and Ba-alginate beads. Mg-alginate bead was not formed and Ca-, Ba- and Sr-alginate beads had a similar uptake volume about 4.2g, respectively. The uptake volume of sodium chloride by CaCl$_2$concentration(0.1M. 0.2M and 1M), curing solution, was 4.8, 4.2g and 4.1g, respectively. The uptake volume by sodium alginate concentration(0.6%, 1% and 2%) was 2.8g, 4.0g, and 4.4g, respectively and Ca-alginate bead size was not effected in uptake sodium chloride. The uptake rate on initial sodium chloride concentration(4%, 8%, 12% and 16%) was 30%, 28%, 27% and 25%, respectively. The uptake rate on basic pH(10.0) was higher than when compared to other neutral pH(6.8) and acidic pH(4.0). The initial uptake velocity of sodium chloride from immobilization beads with salt resistant bacteria was lower than that of non-immobilization beads. The uptake rate of sodium chloride was decreased according to elongation of curing time. Reusability of Ca-alginate beads was possible but according to reutilization, the salt uptake volume of beads was also decreased. The uptake volume of sodium chloride from Doengjang by Ca-alginate beads on time course(3, 6, 12, and 24 hour) was revealed 5g, 6g, 7g and 7g, respectively.

Changes of Lens Morphology and TBUT by Dehydration of Soft Contact Lens (소프트콘택트렌즈 건조로 인한 렌즈 형태 및 TBUT의 변화)

  • Park, Mijung;Lee, Yu-Na;Kang, Kyu Eun;Lee, Min Ha
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • Purpose: This study was performed to evaluate the changes of lens morphology and tear stability during wearing soft contact lenses (SCLs) which were kept in drying condition like dry eye or became to be dried due to heedless care. Method: SCLs having different water content, thickness or material were rehydrated after being dehydrated artificially 2 or 4 times, and estimated their diameter and radius. Furthermore, the changes of tear film break-up time (TBUT) during SCL wearing were also measured. Result: Due to the dryness, the diameter of both 70% water content SCL and 59% water content SCL decreased, but the decrement was larger in 59% water content SCL. The more 59% water content SCL was dehydrated, the more its radius changed. However, the radius of 70% water content SCL did not change by 2 times dehydration and increased greatly by 4 times dehydration. The reduction of diameter of -1.00 D SCL was greater than that of -9.00 D SCL. Moreover, the radius of -1.00 D SCL increased depending on the frequency of dehydration but that of -9.00 D SCL did not changed. The diameter and radius changes of lotrafilcon B, silicone hydrogel lens, were less than those of hilafilcon B, copolymer of HEMA and N-vinyl pyrrolidone. TBUT during wearing SCLs decreased by wearing dehydrated SCLs. Conclusion: The diameter and radius of dehydrated SCLs as well as TBUT during wearing them were changed in spite of rehydration, which would be the important cause of uncomfortable feeling when people wore dehydrated SCL. The changes of SCL morphology and TBUT differed according to the water content, lens thickness and material.

  • PDF