• Title/Summary/Keyword: Hydrodynamic Performance

Search Result 500, Processing Time 0.03 seconds

Prediction of Ship Manoeuvring Performance Based on Virtual Captive Model Tests (가상 구속모형시험을 이용한 선박 조종성능 평가)

  • Sung, Young Jae;Park, Sang-Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.5
    • /
    • pp.407-417
    • /
    • 2015
  • For the more accurate prediction on manoeuvring performance of a ship at initial design phase, bare hull manoeuvring coefficients were estimated by RANS(Reynolds Averaged Navier-Stokes) based virtual captive model tests. Hydrodynamic forces and moment acting on the hull during static drift and harmonic oscillatory motions were computed with a commercial RANS code STAR-CCM+. Automatic and consistent mesh generation could be implemented by using macro functions of the code and user dependency could be greatly reduced. Computed forces and moments on KCS and KVLCC 1&2 were compared with the corresponding measurements from PMM(Planar Motion Mechanism) tests. Quite good agreement can be observed between the CFD and EFD results. Manoeuvring coefficients and IMO standard manoeuvres estimated from the computed data also showed reasonable agreement with those from the experimental data. Based on these results, we could confirm that the developed virtual captive manoeuvring model test process could be applied to evaluate manoeuvrability of a ship at the initial hull design phase.

CFD Analysis of Marine Propeller-Hub Vortex Control Device Interaction (프로펠러와 허브 보오텍스 조절장치 상호작용 CFD 해석)

  • Park, Hyun-Jung;Kim, Ki-Sup;Suh, Sung_Bu;Park, Ill-Ryong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.266-274
    • /
    • 2016
  • Many researchers have been trying to improve the propulsion efficiency of a propeller. In this study, the numerical analysis is carried out for the POW(Propeller Open Water test) performance of a propeller equipped with an energy saving device called PHVC(Propeller Hub Vortex Control). PHVC is aimed to control the propeller hub vortex behind the propeller so that the rotational kinetic energy loss can be reduced. The unsteady Reynolds Averaged Navier-Stokes(URANS) equations are assumed as the governing flow equations and are solved by using a commercial CFD(Computational Fluid Dynamics) software, where SST k-ω model is selected for turbulence closure. The computed characteristic values, thrust, torque and propulsion efficiency coefficients for the target propeller with and without PHVC and the local flows in the propeller wake region are validated by the model test results of KRISO LCT(Large Cavitation Tunnel). It is concluded from the present numerical results that CFD can be a good promising method in the assessment of the hydrodynamic performance of PHVC in the design stage.

A Study on the Structural Performance and the Design of Propeller Root Fillet Surfaces having nT-T/n section (nT-T/n 단면형상을 갖는 프로펠러 뿌리 필렛의 구조 성능 분석과 설계방안에 관한 연구)

  • Ruy, Won-Sun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.5
    • /
    • pp.372-379
    • /
    • 2015
  • The blade root fillets which have strong influences on the performance of propellers in the both structural and hydrodynamic points of view, are mechanical parts for smooth connection surface with a blade and a hub. A few related researches (Sabol, 1983; Kennedy, 1997) have noted that 3T-T/3 double radius section design would be suitable for reducing Stress Concentration Factor(SCF) and increasing Cavitation Inception Speed(CIS). In this paper, it is confirmed that this compound cross-section design has come close to the optimum solution in the shape optimization standpoint so that it could protect the propeller blade under the frequent and various loading cases. On that basis, we suggest the definite and simple fillet design methodology that has the cross-section with nT-T/n compound radius and elliptic shape which could sustain the given derivatives information as well as the offsets at the boundary and all inner region of the fillet surface. In addition, the result of design is presented in form of IGES file format in order to connect with NC machine seamlessly.

Performance analysis of Savonius Rotor for Wave Energy Conversion using CFD

  • Zullah, Mohammed Aisd;Choi, Young-Do;Kim, Kyu-Han;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.600-605
    • /
    • 2009
  • A general purpose viscous flow solver Ansys CFX is used to study a Savonius type wave energy converter in a 3D numerical viscous wave tank. This paper presents the results of a computational fluid dynamics (CFD) analysis of the effect of blade configuration on the performance of 3 bladed Savonius rotors for wave energy extraction. A piston-type wave generator was incorporated in the computational domain to generate the desired incident waves. A complete OWC system with a 3-bladed Savonius rotor was modeled in a three dimensional numerical wave tank and the hydrodynamic conversion efficiency was estimated. The flow over the rotors is assumed to be two-dimensional (2D), viscous, turbulent and unsteady. The CFX code is used with a solver of the coupled conservation equations of mass, momentum and energy, with an implicit time scheme and with the adoption of the hexahedral mesh and the moving mesh techniques in areas of moving surfaces. Turbulence is modeled with the k.e model. Simulations were carried out simultaneously for the rotor angle and the helical twist. The results indicate that the developed models are suitable to analyze the water flows both in the chamber and in the turbine. For the turbine, the numerical results of torque were compared for all the cases.

  • PDF

Vertical Axis Tidal Turbine Design and CFD hydrodynamic Analysis (CFD를 이용한 수직축 터빈 설계 및 유동특성 분석)

  • Jo, Chulhee;Ko, Kwangoh;Lee, Junho;Rho, Yuho;Lee, Kanghee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.159.1-159.1
    • /
    • 2011
  • Due to the global warming, the need to secure the alternative resources has become more important worldwide. Having very strong current on the west coast with up to 10 m tidal range, there are many suitable sites for the application of TCP(Tidal current power) in Korea. Not only from the current produced from the high tidal range, but also it can be widely applied to the offshore jetties and piers. The VAT(Vertical axis turbine) system could be very effective tidal device to extract the energies from the attacking flow to the structures. For the relatively slow current speed, the VAT system could be more effective application than HAT(Horizontal axis turbine) device. The performance of VAT can be evaluated by various parameters including number of blades, shape, sectional size, diameters and etc. The paper introduces the multi-layer vertical axis tidal current power system with savonius turbine. The turbine was designed with consideration of optimal blade numbers and the performance was simulated by CFD analysis.

  • PDF

An Adaptive Learning Controller for Underwater Vehicle with Thruster Dynamics (추진기의 영향을 고려한 무인잠수정의 적응학습제어)

  • 이원창
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.4
    • /
    • pp.290-297
    • /
    • 1997
  • Underwater robotic vehicles(URVs) are used for various work assignments such as pipe-lining, inspection, data collection, drill support, hydrography mapping, construction, maintenance and repairing of undersea equipment, etc. As the use of such vehicles increases the development of vehicles having greater autonomy becomes highly desirable. The vehicle control system is one of the most critic vehicle subsystems to increase autonomy of the vehicle. The vehicle dynamics is nonlinear and time-varying. Hydrodynamic coefficients are often difficult to accurately estimate. It was also observed by experiments that the effect of electrically powered thruster dynamics on the vehicle become significant at low speed or stationkeeping. The conventional linear controller with fixed gains based on the simplified vehicle dynamics, such as PID, may not be able to handle these properties and result in poor performance. Therefore, it is desirable to have a control system with the capability of learning and adapting to the changes in the vehicle dynamics and operating parameters and providing desired performance. This paper presents an adaptive and learning control system which estimates a new set of parameters defined as combinations of unknown bounded constants of system parameter matrices, rather than system parameters. The control system is described with the proof of stability and the effect of unmodeled thruster dynamics on a single thruster vehicle system is also investigated.

  • PDF

Study on Ship Motion Analysis of Turret-Moored LNG FSRU Compared with Model Test (터렛 계류 LNG FSRU의 운동 해석 및 모형시험 검토)

  • Jee, Hyun-Woo;Park, Byung-Joon;Jeong, Seung-Gyu;Choi, Young-Dal;Hong, Seok-Won;Sung, Hong-Gun;Cho, Seok-Kyu
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.127-132
    • /
    • 2011
  • In this paper, hydrodynamic performance of FSRU which is designed to operate in North America East Coast assessed. In order to estimate the dynamic performance, the numerical analysis is carried out based on a time domain simulation program to solve the coupled dynamics for floater and mooring lines which is as well known program as DNV SESAM package. The target operating area is East coast of North America and the model test was carried out based on the meta-ocean data of the area. The mooring analysis is only considered wave without other environment condition at this time. The results of the numerical analysis show the under-estimated results at the higher wave height condition. But the tendency is very similar. Also, the motion response show good agreement compared with model test.

  • PDF

Hydrodynamics and parametric study of an activated sludge process using residence time distribution technique

  • Sarkar, Metali;Sangal, Vikas K.;Bhunia, Haripada
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.400-408
    • /
    • 2020
  • Hydrodynamic study of Activated Sludge Process (ASP) is important to optimize the reactor performance and detect anomalies in the system. Residence time distribution (RTD) study has been performed using LiCl as tracer on a pilot scale aeration tank (AT) and ASP, treating the pulp and paper mill effluent. The hydraulic performance and treatment efficiency of the AT and ASP at different operating parameters like residence time, recycle rate was investigated. Flow anomalies were identified and based on the experimental data empirical models was suggested to interpret the hydrodynamics of the reactors using compartment modelling technique. The analysis of the RTD curves and the compartment models indicated increase in back-mixing ratio as the mean hydraulic retention time (MHRT) of the tank was increased. Bypassing stream was observed at lower MHRT. The fraction of dead zone in the tank increased by approximate 20-25% with increase in recycle rate. The fraction of the stagnant zone was found well below 5% for all performed experiments, which was under experimental error. The substrate removal of 91% for Chemical oxygen demand and 96% for Biochemical oxygen demand were observed for the ASP working at a hydraulic mean residence time 39 h MRT with a 20% recycling of activated sludge.

Performance of the Submerged Dual Buoy/Membrane Breakwaters in Oblique Seas

  • Kee, S.T.
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.11-21
    • /
    • 2001
  • The focus of this paper is on the numerical investigation of obliquely incident wav interactions with a system composed of fully submerged and floating dual buoy/vertical-flexible-membrane breakwaters placed in parallel with spacing between two systems. The fully submerged two systems allow surface and bottom gaps to enable wave transmission over and under the system. The problem is formulated based on the two-dimensional multi-domain hydro-elastic linear wave-body interaction theory. The hydrodynamic interaction of oblique incident waves with the combination of the rigid and flexible bodies was solved by the distribution of the simple sources (modified Bessel function of the second kind) that satisfy the Helmholz governing equation in fluid domains. A boundary element program for three fluid domains based on a discrete membrane dynamic model and simple source distribution method is developed. Using this developed computer program, the performance of various dual systems varying buoy radiuses and drafts, membrane lengths, gaps, spacing, mooring-lines stiffness, mooring types, water depth, and wave characteristics is thoroughly examined. It is found that the fully submerged and floating dual buoy/membrane breakwaters can, if it is properly tuned to the coming waves, have good performances in reflecting the obliquely incident waves over a wide range of wave frequency and headings.

  • PDF

Influence of Asymmetric Aerodynamic Loading on Multiple Unit Floating Offshore Wind Turbine (부유식 다수 풍력 발전기에 작용하는 비대칭 공력 하중의 영향)

  • Bae, Yoon Hyeok;Kim, Moo-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.255-262
    • /
    • 2015
  • The present study developed a numerical simulation tool for the coupled dynamic analysis of multiple turbines on a single floater (or Multiple Unit Floating Offshore Wind Turbine (MUFOWT)) in the time domain, considering the multiple-turbine aero-blade-tower dynamics and control, mooring dynamics, and platform motions. The numerical tool developed in this study was designed based on and extended from the single-turbine analysis tool FAST to make it suitable for multiple turbines. For the hydrodynamic loadings of floating platform and mooring-line dynamics, the CHARM3D program developed by the authors was incorporated. Thus, the coupled dynamic behavior of a floating base with multiple turbines and mooring lines can be simulated in the time domain. To investigate the effect of asymmetric aerodynamic loading on the global performance and mooring line tensions of the MUFOWT, one turbine failure case with a fully feathered blade pitch angle was simulated and checked. The aerodynamic interference between adjacent turbines, including the wake effect, was not considered in this study to more clearly demonstrate the influence of the asymmetric aerodynamic loading on the MUFOWT. The analysis shows that the unbalanced aerodynamic loading from one turbine in MUFOWT may induce appreciable changes in the performance of the floating platform and mooring system.