• Title/Summary/Keyword: Hydrodynamic Motion Analysis

Search Result 233, Processing Time 0.034 seconds

Integrated Analysis of Hydrodynamic Motions and Structural Behavior of Large-Scaled Floating Structures using AQWA-ANSYS Coupling (AQWA-ANSYS 연계에 의한 대형 부유구조체의 파랑운동-구조거동 통합해석)

  • Lee, Du-Ho;Jeong, Youn-Ju
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.601-608
    • /
    • 2011
  • In order to design floating structures, it should be required to evaluate hydrodynamic motions and structural behavior under the wave loadings. Then, structural behavior of floating structures should be evaluated including the effects of wave-induced hydraulic pressure subjected to floating structures. However, there has been a problem to exactly evaluate structural behavior of floating structures since it was difficult to directly connect wave-induced hydraulic pressure resulting from hydrodynamic analysis with structural analysis model. In this study, in order to exactly evaluate structural behavior of floating structures under the wave loading, integrated analysis of hydrodynamic motion and structural behavior was carried out to the large-scaled floating structure. The wave-induced hydraulic pressure resulting from hydrodynamic analysis AQWA were directly mapped to structural analysis model ANSYS bia Workbench interface of ANSYS Inc.. As the results of this study, it was found that the integrated analysis of this study evaluate exactly structural behavior of floating structures under the wave loadings since this method can directly reflect wave-induced hydraulic pressure resulting from hydrodynamic analysis to structural analysis model. Also, as the results of structural behavior evaluation, it was found that the tensile stress on the top slab was maximized at the wave direction of $0^{\circ}$, and tensile stress on the bottom slab was maximized at the wave direction of $45^{\circ}$, respectively.

A Study on the Modeling of Hydrodynamic Coefficient for the Emergency Maneuver Simulation of Underwater Vehicle (수중함의 긴급기동 해석을 위한 유체력계수 모델링에 관한 연구)

  • Shin, Yong-Ku;Lee, Seung-Keon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.601-607
    • /
    • 2005
  • This paper describes a hydrodynamic modelling study based on the Feldman's equation to predict the nonlinear and coupled maneuvering characteristics of high speed submarine. The hydrodynamic coefficients set is obtained from the modeling of the cross flow drag force and sail induced vorticity, and the captive model experiments(VPMM and RA test) results used to improved the accuracy. The results contained in this paper will be helpful to predict the behavior of tight turn maneuver and to improve the SOE(Safety Operational Envelope) analysis in case of emergency maneuver.

Hydrodynamic Forces on a Two-dimensional Cylinder in Shallow Water (천수역에 놓인 2차원 주상체에 수평방향으로 작용하는 동유체력에 관한 고찰)

  • Hang-S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.2
    • /
    • pp.21-26
    • /
    • 1986
  • An analysis is made of hydrodynamic forces acting horizontally on a two-dimensional cylinder, when it is exposed to incident waves and consequently undergoes a swaying motion in shallow water. Applying the method of matched asymptotic expansions the added mass, wave damping and the wave exciting force are obtained in terms of the difference in potential across the cylinder in a simple manner. The potential jump is related to the so-called blockage coefficient which is determined purely from geometry. It is found that the wave damping coefficient can not exceed the blockage coefficient.

  • PDF

Verification and improvement of dynamic motion model in MARS for marine reactor thermal-hydraulic analysis under ocean condition

  • Beom, Hee-Kwan;Kim, Geon-Woo;Park, Goon-Cherl;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1231-1240
    • /
    • 2019
  • Unlike land-based nuclear power plants, a marine or floating reactor is affected by external forces due to ocean conditions. These external forces can cause additional accelerations and affect each system and equipment of the marine reactor. Therefore, in designing a marine reactor and evaluating its performance and stability, a thermal hydraulic safety analysis code is necessary to consider the thermal hydrodynamic effects of ship motion. MARS, which is a reactor system analysis code, includes a dynamic motion model that can simulate the thermal-hydraulic phenomena under three-dimensional motion by calculating the body force term included in the momentum equation. In this study, it was verified that the dynamic motion model can simulate fluid motion with reasonable accuracy using conceptual problems. In addition, two modifications were made to the dynamic motion model; first, a user-supplied table to simulate a realistic ship motion was implemented, and second, the flow regime map determination algorithm was improved by calculating the volume inclination information at every time step if the dynamic motion model was activated. With these modifications, MARS could simulate the thermal-hydraulic phenomena under ocean motion more realistically.

The Impact Analysis for Water-Entry of Cylindrical Body (원통형 실린더의 입수 충격 해석)

  • 독고욱;김인학
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • When a body enters waters, its original kinetic energy or momentum is distributed among the body and surrounding water in the form of added mass. Due to the transfer of the energy or momentum, the bode is subjected to the hydrodynamic impact forces and acceleration. This impact behavior can be an important criterion of submersible vehicle launched to the air. In this paper, based on Life-boat model, an approximate method is proposed for the evaluation of the forces and responses of cylindrical rigid bode by water entry impact. The impact forces are calculated by yon Karman's momentum theory and motion responses the body, especially acceleration, are calculated by a numerical integration of the motion equations derived by hydrodynamic force equilibrium. The proposed method is expected to be a simple but efficient tool lot the preliminary design or motion analysis of a body subjected to water entry impact.

Design and Dynamic Analysis of Fish-like Robot;PoTuna

  • Kim, Eun-Jung;Youm, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1580-1586
    • /
    • 2003
  • This paper presents the design and the analysis of a "fish-like underwater robot". In order to develop swimming robot like a real fish, extensive hydrodynamic analysis were made followed by the study of biology of the fishes especially its maneuverability and propel styles. Swimming mode is achieved by mimicking fish-swimming of carangiform. This is the swimming mode of the fast motion using its tail and peduncle for propulsion. In order to generate configurations of vortices that gives efficient propulsion yawing and surging with a caudal fin has applied and in order to submerge and maintain the body balance pitching and heaving motion with a pair of pectoral fin is used. We have derived the equation of motion of PoTuna by two methods. In first method, we use the equation of motion of underwater vehicle with the potential flow theory for the power of propulsion. In second method, we apply the method of the equation of motion of UVM(Underwater Vehicle-Manipulator). Then, we compare these results.

  • PDF

A Numerical Simulation for the Propulsion of Axisymmetric Micro-Hydro-Machine by Contractive and Dilative Motion (수축팽창 운동에 의한 축대칭 마이크로-하이드로-머신의 추진을 위한 수치 시뮬레이션)

  • Kim Moon-Chan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.30-37
    • /
    • 2001
  • A Numerical simulation for the propulsion of axisymmetric body by contractive and dilative motion is carried out. The present analysis shows that a propulsive force can be obtained in highly viscous fluid by a contractive and dilative motion of axisymmetric body. An axisymmetric analysis code is developed with unstructured grid system for the simulation of complicated motion and geometry. The developed code is validated by comparing with the results of stokes approximation with the problem of uniform flow past a sphere in low Reynolds number($R_n=1$). The validated code is applied to the simulation of contractive and dilative motion of body. The simulation is extended to the analysis of waving surface with projecting part for finding out the difference of hydrodynamic performance according to the variation of waving surface configuration. The present study will be the basic research for the development of the propulsor of an axisymmetric micro-hydro-machine.

  • PDF

Dynamic Analysis of Rectangular Liquid Storage Structures Excited by Horizontal and Vertical Ground Motions (수평 및 수직 지반운동을 받는 직사각형 유체 저장 구조물의 동적 해석)

  • Park, Jang-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.108-117
    • /
    • 2004
  • Dynamic analysis method is Presented for analyzing rectangular liquid storage structures excited by horizontal and vertical ground motions. The irrotational motion of invicid and incompressible ideal fluid in rigid rectangular liquid storage structures subjected to horizontal and vertical ground motions and the motion of fluid induced by structural deformation are expressed by analytic solutions. Analysis methods are obtained by applying analytic solutions of the fluid motion to finite element equation of the structural motion. The fluid-structure interaction effect is reflected into the coupled equation as added fluid mass matrix. The free surface sloshing motion, hydrodynamic pressure acting on the wall and structural behavior due to horizontal and vertical ground motions are obtained by the presented method.

Motion Response Estimation of Fishing Boats Using Deep Neural Networks (심층신경망을 이용한 어선의 운동응답 추정)

  • TaeWon Park;Dong-Woo Park;JangHoon Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.958-963
    • /
    • 2023
  • Lately, there has been increasing research on the prediction of motion performance using artificial intelligence for the safe design and operation of ships. However, compared to conventional ships, research on small fishing boats is insufficient. In this paper, we propose a model that estimates the motion response essential for calculating the motion performance of small fishing boats using a deep neural network. Hydrodynamic analysis was conducted on 15 small fishing boats, and a database was established. Environmental conditions and main particulars were applied as input data, and the response amplitude operators were utilized as the output data. The motion response predicted by the trained deep neural network model showed similar trends to the hydrodynamic analysis results. The results showed that the high-frequency motion responses were predicted well with a low error. Based on this study, we plan to extend existing research by incorporating the hull shape characteristics of fishing boats into a deep neural network model.

Finite element based total response analysis of rectangular liquid containers against different excitations

  • Kalyan Kumar Mandal
    • Ocean Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.57-77
    • /
    • 2023
  • In the present study, the total hydrodynamic pressure exerted by the fluid on walls of rectangular tanks due to horizontal excitations of different frequencies, is investigated by pressure based finite element method. Fluid within the tanks is invisid, compressible and its motion is considered to be irrotational and it is simulated by two dimensional eight-node isoparametric. The walls of the tanks are assumed to be rigid. The total hydrodynamic pressure increases with the increase of exciting frequency and has maximum value when the exciting frequency is equal to the fundamental frequency. However, the hydrodynamic pressure has decreasing trend for the frequency greater than the fundamental frequency. Hydrodynamic pressure at the free surface is independent to the height of fluid. However, the pressure at base and mid height of vertical wall depends on height of fluid. At these two locations, the hydrodynamic pressure decreases with the increase of fluid depth. The depth of undisturbed fluid near the base increases with the increase of depth of fluid when it is excited with fundamental frequency of fluid. The sloshing of fluid with in the tank increases with the increase of exciting frequency and has maximum value when the exciting frequency is equal to the fundamental frequency of liquid. However, this vertical displacement is quite less when the exciting frequency is greater than the fundamental frequency.