• Title/Summary/Keyword: Hydrodynamic Interaction

Search Result 309, Processing Time 0.025 seconds

Experimental Study on Interaction of Side-by-Side Moored Vessels (병렬계류 선박의 동유체력 상호간섭에 관한 실험연구)

  • Kim, Jin-Ha;Hong, Sa-Young;Cho, Seok-Gyo;Choi, Yoon-Rak;Song, Myong-Jae;Kim, Duk-Su
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.208-213
    • /
    • 2003
  • Recently, Side-by-side mooring system of LNG FPSO and shuttle tanker is one of hot issues in offshore floating body dynamics, which requires accurate analysis of hydrodynamic interactions between side by side moored LNG FPSO and shuttle tanker than tandem moored vessels. This paper aims to investigate basic interaction characteristics of side-by-side moored multiple vessels both numerically and experimentally. A higher-order boundary element method combined with generalized nwde approach will be applied to analysis of motion and drift force of side by side moored multiple-body. Model tests were carried out for the same multiple floating bodies in regular and irregular waves. Motion responses and drift forces of vessels for two mooring situation(coupled & uncoupled) were compared with those of calculations. Discussions will be highlighted on applicability of numerical method to prediction of sophisticated multi-body interaction problem of which motion behavior is very important to analysis of mooring dynamics of deep sea floating bodies.

  • PDF

Seismic Response of Base-Isolated Liquid Storage Tanks Considering Liquid-Structure-Soil Interaction (유체-구조물-지반 상호작용을 고려한 면진된 유체저장탱크의 3차원 지진응답)

  • 조성용;김문겸;임윤묵
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.98-105
    • /
    • 2002
  • The effects of the base-isolation system and elastic soil foundation on the behavior of a liquid storage tank are studied. To evaluate the seismic response of liquid storage tank accurately, the coupled dynamic system considering base isolation and soil interaction problem is formulated in time domain. Results show that the base isolation system reduces effectively the radial displacements, base shears, overturning moments, axial resultant stresses and the hydrodynamic pressure by providing flexibility and energy dissipation capability. Base Isolation may, however, increase the relative liquid sloshing amplitude due to the effect of liquid-structure interaction and cause excessive large relative displacements between structure and foundation. In addition to base-isolator, the dynamic behavior of liquid storage tank is related to the flexibility of base foundation, so the analysis of soil-structure interaction s achieved.

  • PDF

Hydrodynamic Interaction Analysis of Floating Multi-body System

  • Kim, Young-Bok;Kim, Moo-Hyun;Kim, Yong-Yook;Kim, Young-Hun
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.198-204
    • /
    • 2011
  • Recently, several problems have occurred in the space, infra-structure, and facility of the contiguity of existing harbors due to the trend of enlarged container vessels. In this regard, the Mobile Harbor has been proposed conceptually in this study as an effective solution for these problems. The concept is that of a transfer loader that transfers containers from a large container ship to the harbor on land, and is a catamaran type floating barge. The catamaran-type vessel is well known for its advantage in maneuverability, resistance, and effectiveness for working on board. For the safe and effective operation of the two floating bodies (a container ship and the mobile harbor in the near sea detached from the quay), robot arms, novel crane systems, and pneumatic fenders are specially devised with an additional mooring facility or DP (dynamic positioning) system. In this study, this concept is to be verified through comparison and simulation studies under various environmental conditions. It is shown that the proposed concept is in general feasible but there are several areas for further investigation and improvement.

Direct simulations on 2D mold-filling processes of particle-filled fluids

  • Hwang, Wook-Ryol;Kim, Worl-Yong;Kang, Shin-Hyun;Kim, See-Jo
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.3
    • /
    • pp.193-200
    • /
    • 2009
  • We present a direct simulation technique for two-dimensional mold-filling simulations of fluids filled with a large number of circular disk-like rigid particles. It is a direct simulation in that the hydrodynamic interaction between particles and fluid is fully considered. We employ a pseudo-concentration method for the evolution of the flow front and the DLM (distributed Lagrangian multipliers)-like fictitious domain method for the implicit treatment of the hydrodynamic interaction. Both methods allow the use of a fixed regular discretization during the entire computation. The discontinuous Galerkin method has been used to solve the concentration evolution equation and the rigid-ring description has been introduced for freely suspended particles. A buffer zone, the gate region of a finite area subject to the uniform velocity profile, has been introduced to put discrete particles into the computational domain avoiding any artificial discontinuity. From example problems of 450 particles, we investigated the particle motion and effects of particles on the flow for both Newtonian and shear-thinning fluid media. We report the prolonged particle movement toward the wall in case of a shear-thinning fluid, which has been interpreted with the shear rate distribution.

다방향 규칙파 중 선체, 타, 추진기에 작용하는 유체력 추정을 위한 실험적 연구

  • Seo, Ju-Won;;;;Jeon, Myeong-Jun;Yun, Hyeon-Gyu;Kim, Yeon-Gyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.4-6
    • /
    • 2018
  • Traditional methods of research on ship maneuvering performance were estimated in calm water. Ship maneuverability in waves is of vital importance for navigation safety of a ship (ITTC, 2008). The accurate estimation of force and moment acting on the ship and rudder behind propeller are necessary because the rudder, propeller and hull interaction is of key importance. In addition, course-keeping ability and maneuvering performance of a ship can be significantly affected by the presence of wave. In this study, the model test is performed in the regular wave in the square wave tank in Changwon National University and the hydrodynamic force acting on the ship hull and rudder behind the propeller in various wave directions is investigated. The effect of wavelength and wave direction on hydrodynamic force acting on ship and rudder behind propeller in regular waves is discussed.

  • PDF

Numerical simulation of propeller exciting force induced by milling-shape ice

  • Wang, C.;Li, X.;Chang, X.;Xiong, W.P.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.294-306
    • /
    • 2019
  • On the basis of the Computational Fluid Dynamics technique (CFD) combined with the overlap grid method, this paper establishes a numerical simulation method to study the problem of ice-propeller interaction in viscous flow and carries out a simulation forecast of the hydrodynamic performance of an ice-class propeller and flow characteristics when in the proximity of milling-shape ice (i.e., an ice block with a groove cut by a high-speed revolving propeller). We use a trimmed mesh in the entire calculation domain and use the overlap grid method to transfer information between the domains of propeller rotation calculation and ice-surface computing. The grid is refined in the narrow gap between the ice and propeller to ensure the accuracy of the flow field. Comparison with the results of the experiment reveals that the error of the hydrodynamic performance is within 5%. This confirms the feasibility of the calculation method. In this paper, we calculate the exciting force of the propeller, analyze the time domain of the exciting force, and obtain the curve of the frequency domain using a Fourier transform of the time-domain curve of the exciting force. The existence of milling-shape ice before the propeller can greatly disturb the wake flow field. Unlike in open water, the propeller bearing capacity shows a downward trend in three stages, and fluctuating pressure is more disordered near the ice.

Rotor dynamic analysis of a tidal turbine considering fluid-structure interaction under shear flow and waves

  • Lass, Andre;Schilling, Matti;Kumar, Jitendra;Wurm, Frank-Hendrik
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.154-164
    • /
    • 2019
  • A rotor dynamic analysis is mandatory for stability and design optimization of submerged propellers and turbines. An accurate simulation requires a proper consideration of fluid-induced reaction forces. This paper presents a bi-directional coupling of a bond graph method solver and an unsteady vortex lattice method solver where the former is used to model the rotor dynamics of the power train and the latter is used to predict transient hydrodynamic forces. Due to solver coupling, determination of hydrodynamic coefficients is obsolete and added mass effects are considered automatically. Additionally, power grid and structural faults like grid fluctuations, eccentricity or failure could be investigated using the same model. In this research work a fast, time resolved dynamic simulation of the complete power train is conducted. As an example, the rotor dynamics of a tidal stream turbine is investigated under two inflow conditions: I - shear flow, II - shear flow + water waves.

Evaluation of jet breakup length with a CFD code under steam generation condition in a pre-flooded cavity

  • Jeong-Hyeon Eom;Gi-Young Tak;In-Sik Ra;Huu Tiep Nguyen;Hae-Yong Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2498-2503
    • /
    • 2023
  • When the reactor vessel is penetrated in a severe accident of light water reactor, the molten fuel-coolant interaction including the jet breakup occurs and the jet breakup length becomes one of the important parameters. Most numerical studies on jet breakup process have been carried out using dedicated computer codes. Some researchers are trying to apply commercial CFD codes to their investigations on comprehensive jet breakup process. However, the complexity of the phenomena limits the CFD application only to hydrodynamic aspects. In the present study, numerical analysis of jet breakup under vapor generation is pursued using the STAR-CCM + code. The obtained CFD prediction of the MATE09 experiment shows jet breakup progression patterns consistent to the images taken in the experiment. Further, the predicted positions of leading head, which determine the jet breakup length, are in good agreement with the MATE 09 data. The investigation of hydrodynamic effects on the jet breakup with higher jet velocity results in a stronger shear force and earlier jet breakup process even though there exists the vapor pocket around the corium jet. In future studies, the effect of vapor intensity on the jet breakup length would be investigated further by changing other parameters.

A study on the hydrodynamic forces acting on a GT 4,000 tonnage fishery training vessel in the proximity of semi-circle bank wall (반원 형상의 측벽 부근을 항행하는 4,000톤급 어업실습선에 미치는 유체력에 관한 연구)

  • Chun-Ki LEE;Kyung-Jin RYU;Yoo-Won LEE;Su-Hyung KIM
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.4
    • /
    • pp.336-343
    • /
    • 2023
  • The aging fishery training vessels from the past have mostly been decommissioned, and many universities are introducing state-of-the-art large fishery training vessels. The purpose of these training vessels is to train marine professionals and above all, safety to prevent marine accidents should be of utmost priority as many students embark on the vessel. This study estimated the impact of the hydrodynamic interaction forces acting on the model vessel (fishery training vessel) from the bank when the vessel pass near the semi-circle bank wall in various conditions through the numerical calculation, especially concerning maneuvering motions of the vessel. For estimation, variables were mainly set as the size of the semi-circle shape, the lateral distance between the bank and the model vessel, and the depth near the bank. As a result, it was estimated that, in order for the model vessel to safely pass the semi-circle bank wall at a speed of 4 knots, the water depth to the vessel draft ratio should be 1.5 or more (approximately 8 m of water depth), and the lateral distance from the semi-circle bank wall should be 0.4 times the model vessel's length (Lpp) or more (a distance of 34 m or more). Under these conditions, it was expected that the model vessel would pass without significantly being affected by the bank wall.

Effects of the Flexibility on the Structural Responses of a Tension Leg Platform (인장계류식 해양구조물의 구조응답에 미치는 굽힘강성의 영향)

  • Lee, Chang-Ho;Lee, Soo-Lyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.38-44
    • /
    • 2007
  • The structural response characteristics of Tension leg platforms(TLPs) in waves are examined for presenting the basic data for structural design of TLPs. The numerical approach is based on a combination of the three dimensional source distribution method and the structural response analysis method, in which the superstructure of TLP is assumed to be flexible instead of rigid. Hydrodynamic and hydrostatic forces on the submerged surface of a TLP have been accurately calculated by excluding the assumption of the slender body theory. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in structural analysis. The mooring forces are estimated as the sum of pretension of tendons and variational tension due to longitudinal displacements. Stiffness matrices of elastic beam elements connecting nodes are formulated by ordinary method of three dimensional frame analysis. The equation of motion about the whole structure is obtained by the sum of forces and moments acting on each nodes.