• Title/Summary/Keyword: Hydrodynamic Interaction

Search Result 313, Processing Time 0.027 seconds

Hydrodynamic Diffusivity of Spherical Particles Suspended in Polymer Solution (고분자용액에 분산된 구형입자의 수력학적 확산계수)

  • 한민수
    • The Korean Journal of Rheology
    • /
    • v.9 no.4
    • /
    • pp.183-189
    • /
    • 1997
  • 본 연구에서는 고분자용액을 분산매로한 현탁액 내에서 입자의 수력학적확산에 관 한 실험적인 연구를 수행하여다. 입자로는 평균직경 275마이크론의 polymethlmethacrylate (PMMA)구형입자를 사용하였고, 분산매로는 PMMA 입자와 밀도르 맞춘 글리세린과 에틸 렌글리콜의 혼합용액에 고분자를 첨가하여 사용하였다. 고분자로는 분자량 6백만의 시약용 폴리아크릴아마이드를 사용하였다. 입자농도는 50%이었다. 용액의 농도는 0∼700ppm이었으 며 이러한 용액은 전단박화현상을 나타내지 않았다. 확산계수는 쿠엣장치 내에서 입자가 두 원통사이에서 아래쪽의 빈 공간으로 확산할 때 시간에 따른 점도측정결과로부터 예측하여 다. 본 연구의 결과 뉴튼성유체의 경우와는 달리 무차원확산계수(D/2)가 일정하지 않으며 전단율이 증가될수록 점점 감소하는 현상을 나타내었다. 고분자의 농도가 증가하는 경우에 는 무차원 확산계수가 감솨는 것을 볼수있었다. 이러한 무차원 확산계수의 감소는 유동하는 현탁액 내에서 입자간의 상호작용이 뉴튼성유체에 비하여 가역적인 것에 기인하는 것으로 판단된다.

  • PDF

Dynamic Interaction Modelling between Arctic Offshore Structures and Ice Floe (극지 해양 구조물과 얼음의 동적 모델화)

  • 황철성;김상준
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.87-92
    • /
    • 1989
  • In this study, the nonlinear dynamic model of the systems which include the offshore structure, the surrounding sea water in terms of the added mass, the foundation in terms of frequency independent springs, dashpots, and the floating ice feature with its hydrodynamic added mass, are proposed for the problem of the large ice floes impact. Dynamic Analysis is performed on two site conditions, sand site and silt site, and on two seasons, winter and summer, for various ice floe velocities. As a result of study, Ice floes from energy balenced method is lower than that from dynamic modeling on sand site, and higher than the on silt site.

  • PDF

Dynamic Analysis of Rectangular Liquid Storage Structures Excited by Horizontal and Vertical Ground Motions (수평 및 수직 지반운동을 받는 직사각형 유체 저장 구조물의 동적 해석)

  • Park, Jang-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.108-117
    • /
    • 2004
  • Dynamic analysis method is Presented for analyzing rectangular liquid storage structures excited by horizontal and vertical ground motions. The irrotational motion of invicid and incompressible ideal fluid in rigid rectangular liquid storage structures subjected to horizontal and vertical ground motions and the motion of fluid induced by structural deformation are expressed by analytic solutions. Analysis methods are obtained by applying analytic solutions of the fluid motion to finite element equation of the structural motion. The fluid-structure interaction effect is reflected into the coupled equation as added fluid mass matrix. The free surface sloshing motion, hydrodynamic pressure acting on the wall and structural behavior due to horizontal and vertical ground motions are obtained by the presented method.

Keyhole-structure and Stability in Laser-beam Penetration Into an Absorbing Liquid (Water) (레이저 빔의 흡수 액체 내 침투에 의해 생성된 키홀 구조와 안정성)

  • 김동식;장덕석
    • Laser Solutions
    • /
    • v.4 no.2
    • /
    • pp.13-19
    • /
    • 2001
  • When a high-power laser beam is irradiated on the surface of material, it is well known that a cavity, called a keyhole induced by the pressure action of the vapor plume, is generated in the molten material. This paper describes the interaction between a pulsed CO$_2$ laser beam and water. The laser-beam is used to generate and maintain a conical depression in the water surface similar to the keyhole created during laser penetration welding. Experimental results show that the depth of laser-beam penetration is limited by hydrodynamic instability. The instability of the surface cavity can be understood by the capillary instability of a hollow jet. Theoretical computation of the steady keyhole shape has been performed. modifying the model suggested by Andrews et al. (1976). The model predicts the qualitative behavior of the keyhole but significantly underestimates the average diameter.

  • PDF

Radiative Transfer Schemes for Hydrodynamical Stellar Surfaces

  • Bach, K.;Robinson, F.J.;Kim, Y.C.
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.24.4-25
    • /
    • 2009
  • We have investigated the radiational fields through a hydrodynamical stellar model atmosphere. Stellar convection zone is the extremely turbulent region composed of partly ionized compressible gases in high temperature. Moreover, super-adiabatic layers are the transition region in energy transport from convection to radiation. Therefore, opacities and thermodynamic properties due to interaction of matter and radiational fields vary significantly with depth. In order to describe radiational fields accurately, the Opacity Distribution Function (ODF) and the Accelerated Lambda Iteration (ALI) have been applied to hydrodynamic medium. As the first result of our radiative transfer, we present time-dependant variation of radiational fields and thermodynamic structures. Our non-gray transfer model has been compared with the conventional Eddington Approximation. Detailed information of radiational fields and thermodynamic properties will provide deeper insight of physical processes inside stellar atmospheres.

  • PDF

A Research on the Mathematical Modeling for the Estimation of Underwater Vehicle's Tail Plane Efficiency (수중함의 함미타 효율추정을 위한 수학모델링에 관한 연구)

  • Shin, Yong-Ku;Lim, Kyung-Sik;Lee, Seung-Keon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.190-196
    • /
    • 2005
  • The ratio between the hydrodynamic force produced by a submarine tau appendage and that acting on an equivalent appendage in isolation is regarded as tail plane efficiency. It is an important parameter in numerical simulations because it has a significant effect on predicted stability, controllability, and maneuverability. The paper introduces some recent work to improve the reliability and general applicability of current methods of tail plane efficiency estimation.

Erection Simulation Considering Interaction between a Floating Crane and a Heavy Cargo (해상크레인과 대형 중량물의 상호 작용을 고려한 탑재 시뮬레이션)

  • Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.1
    • /
    • pp.70-83
    • /
    • 2010
  • Recently, floating cranes are mainly used to erect heavy blocks or cargos for constructing ships in many shipyards. It is important to estimate the dynamic motion of the heavy cargo suspended by a floating crane and the tension of the wire ropes between the floating crane and the heavy cargo. In this paper, the coupled dynamic equations of motion are set up for considering the 6 degree-of-freedom floating crane and the 6-degrees-of-freedom heavy cargo based on multibody system dynamics. Depending on the cargo weight, the motion of the floating crane would be changed to nonlinear state. The nonlinear terms in the equation of motion are considered. In addition, the nonlinear hydrostatic force, the linear hydrodynamic force, wire rope force, mooring force and gravity force are considered as the external forces. As the result of this paper, we analyze the engineering effect for erecting the heavy cargo by using the floating crane.

Modelling of transport phenomena and meniscus shape in Czochralski growth of silicon material

  • Bae, Sun-Hyuk;Wang, Jong-Hoe;Kim, Do-Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.5
    • /
    • pp.454-458
    • /
    • 1999
  • Hydrodynamic Thermal Capilary Model developed previously has been modified to study the transport phenomena in the Czochralski process. Our analysis is focused on the heat transfer in the system, convection in the melt phase, and the meniscus and interface shape. Four major forces drive melt flow in the crucible, which include thermal buoyancy force in the melt, thermocapillary force along the curved meniscus, crucible rotation and crystal rotation. Individual flow mechanism due to each driving force has been examined to determine its interaction with the meniscus and interface shape. A nominal 4-inch-diameter silicon crystal growth process is chosen as a subject for analysis. Heater temperature profile for constant diameter crystal is also present as a function of crystal height or fraction solidified.

  • PDF

Pontoon and Membrane Breakwater

  • Kee, S.T.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.185-191
    • /
    • 2003
  • A numerical study on the hydrodynamic properties of a floating flexible breakwater consisting of triple vertical porous membrane structures attached to a floating rigid pontoon restrained by moorings is carried out in the context of two-dimensional linear wave-flexible body interaction theory. The tensions in the triple membranes are achieved by hanging a clump weight from its lower ends. The clump weight is also restrained properly by moorings. The dynamic behavior of the breakwater was described through an appropriate Green function, and the fluid multi-domains are incorporated into the boundary integral equation. Numerical results are presented which illustrate the effects of the various wave and structural parameters on the efficiency of the breakwater as a barrier to wave action. It is found that the wave reflection and transmission properties of the structures depends strongly on the membrane length taking major fraction of water column, the magnitude of tensions on membrane achieving by the clump weight, proper mooring types and stiffness, the permeability on the membrane dissipating wave energy.

  • PDF