• Title/Summary/Keyword: Hydrodynamic Interaction

Search Result 309, Processing Time 0.026 seconds

A study of the kinematic characteristic of a coupling device between the buffer system and the flexible pipe of a deep-seabed mining system

  • Oh, Jae-Won;Lee, Chang-Ho;Hong, Sup;Bae, Dae-Sung;Cho, Hui-Je;Kim, Hyung-Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.652-669
    • /
    • 2014
  • This paper concerns the kinematic characteristics of a coupling device in a deep-seabed mining system. This coupling device connects the buffer system and the flexible pipe. The motion of the buffer system, flexible pipe and mining robot are affected by the coupling device. So the coupling device should be considered as a major factor when this device is designed. Therefore, we find a stable kinematic device, and apply it to the design coupling device through this study. The kinematic characteristics of the coupling device are analyzed by multi-body dynamics simulation method, and finite element method. The dynamic analysis model was built in the commercial software DAFUL. The Fluid Structure Interaction (FSI) method is applied to build the deep-seabed environment. Hydrodynamic force and moment are applied in the dynamic model for the FSI method. The loads and deformation of flexible pipe are estimated for analysis results of the kinematic characteristics.

Evaluation of sloshing resistance performance for LNG carrier insulation system based on fluid-structure interaction analysis

  • Lee, Chi-Seung;Cho, Jin-Rae;Kim, Wha-Soo;Noh, Byeong-Jae;Kim, Myung-Hyun;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.1-20
    • /
    • 2013
  • In the present paper, the sloshing resistance performance of a huge-size LNG carrier's insulation system is evaluated by the fluid-structure interaction (FSI) analysis. To do this, the global-local analysis which is based on the arbitrary Lagrangian-Eulerian (ALE) method is adopted to accurately calculate the structural behavior induced by internal LNG sloshing of a KC-1 type LNG carrier insulation system. During the global analysis, the sloshing flow and hydrodynamic pressure of internal LNG are analyzed by postulating the flexible insulation system as a rigid body. In addition, during the local analysis, the local hydroelastic response of the LNG carrier insulation system is computed by solving the local hydroelastic model where the entire and flexible insulation system is adopted and the numerical analysis results of the global analysis such as initial and boundary conditions are implemented into the local finite element model. The proposed novel analysis techniques can potentially be used to evaluate the structural integrity of LNG carrier insulation systems.

Probe Diffusion in Polymer Solutions by Forced Rayleigh Scattering

  • Jaeyung Lee;Taiho Park;Jungmoon Sung;Sangwook Park;Taihyun Chang
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.569-574
    • /
    • 1991
  • Methyl red diffusion in polymer solutions was studied by a transient holographic method, forced Rayleigh scattering. In semi-dilute solutions of a polystyrene, where no specific interaction with the probe exists, we found within experimental uncertainty that the retardation of diffusion rate of methyl red is independent of the solvents used. This indicates that the hydrodynamic interaction in polymer coils is not affected by the nature of solvents enough to exhibit a detectable change in the diffusion rate of the probe. On the other hand, a substantial reduction of diffusion rate was observed in poly(methyl methacrylate) solutions in toluene. Together with the similar observation reported with poly(vinyl acetate), it is confirmed that hydrogen bond between the probe and the polymer is responsible for the retarded diffusion. The decay-growth-decay profile found in this system reveals a finite difference in diffusion coefficients of cis and trans isomer of methyl red. We estimate the difference and suggest that the cis isomer interacts with the polymer more strongly than the trans isomer.

Analysis of Liquid Sloshing in a Two-Dimensional Elastic Tank (구조물의 탄성을 고려한 2차원 탱크내 유동해석)

  • P.M.,Lee;S.W.,Hong;S.Y.,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.3
    • /
    • pp.107-116
    • /
    • 1990
  • The liquid sloshing in an elastic tank is a fluid-structure interaction problem. It requires nonlinear analysis to solve the complicated physics involved in the large interaction of fluid-structure, the variation of dynamic characteristics of structure due to hydrodynamic loading, and the distorsion of fluid flow due to structural vibration. In this paper a Lagrangian FEM is introduced to analyze the liquid sloshing in an elastic tank assuming that the elastic wall is one degree of freedom rigid wall. Numerical integration is performed using an implicit-explicit algorithm, which is formed by mixing the predictor-corrector method and the Runge-Kutta 4th order method. The influence of dynamic characteristics of the sloshing tank on the fluid flow is discussed. The numerical method is also applied for the simulation of the wall generated wave in the tank.

  • PDF

A hydrodynamic model of nearshore waves and wave-induced currents

  • Sief, Ahmed Khaled;Kuroiwa, Masamitsu;Abualtayef, Mazen;Mase, Hajime;Matsubara, Yuhei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.216-224
    • /
    • 2011
  • In This study develops a quasi-three dimensional numerical model of wave driven coastal currents with accounting the effects of the wave-current interaction and the surface rollers. In the wave model, the current effects on wave breaking and energy dissipation are taken into account as well as the wave diffraction effect. The surface roller associated with wave breaking was modeled based on a modification of the equations by Dally and Brown (1995) and Larson and Kraus (2002). Furthermore, the quasi-three dimensional model, which based on Navier-Stokes equations, was modified in association with the surface roller effect, and solved using frictional step method. The model was validated by data sets obtained during experiments on the Large Scale Sediment Transport Facility (LSTF) basin and the Hazaki Oceanographical Research Station (HORS). Then, a model test against detached breakwater was carried out to investigate the performance of the model around coastal structures. Finally, the model was applied to Akasaki port to verify the hydrodynamics around coastal structures. Good agreements between computations and measurements were obtained with regard to the cross-shore variation in waves and currents in nearshore and surf zone.

Impact of the Thruster Jet Flow of Ultra-large Container Ships on the Stability of Quay Walls

  • Hwang, Taegeon;Yeom, Gyeong-Seon;Seo, Minjang;Lee, Changmin;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.403-413
    • /
    • 2021
  • As the size of ships increases, the size and output power of their thrusters also increase. When a large ship berths or unberths, the jet flow produced from its thruster has an adverse effect on the stability of quay walls. In this study, we conducted a numerical analysis to examine the impact of the thruster jet flow of a 30,000 TEU container ship, which is expected to be built in the near future, on the stability of a quay wall. In the numerical simulation, we used the fluid-structure interaction analysis technique of LS-DYNA, which is calculated by the overlapping capability using an arbitrary Lagrangian Eulerian formulation and Euler-Lagrange coupling algorithm with an explicit finite element method. As the ship approached the quay wall and the vertical position of the thruster approached the mound of the quay wall, the jet flow directly affected the foot-protection blocks and armor stones. The movement and separation of the foot-protection blocks and armor stones were confirmed in the area affected directly by the thruster jet flow of the container ship. Therefore, the thruster jet flows of ultra-large ships must be considered when planning and designing ports. In addition, the stability of existing port structures must be evaluated.

A parametric investigation on seismic performance of ageing Sarıyar dam

  • Ahmad Yamin Rasa;Ahmet Budak
    • Structural Engineering and Mechanics
    • /
    • v.91 no.2
    • /
    • pp.123-133
    • /
    • 2024
  • The assessment of seismic behavior and seismic performance of ageing Sarıyar concrete gravity dam constructed on Sakarya River in Türkiye is the main focus of this paper. For this purpose, the impact of sediment domain, ageing of concrete material under the impact of chemical and mechanical actions, and dam-water-sediment interaction are included in the two-dimensional (2D) finite element (FE) model developed in FORTRAN 90 environment. In the FE model, the dam and age dependent sediment domains are modeled by solid elements, while reservoir domain is modeled by Lagrangian fluid elements. The radiation of reflected waves to the unbounded water domain is modeled by infinite Lagrangian fluid elements, while unbounded sediment domain is modeled by infinite solid elements. The coupled system was assumed to be under the simultaneous impact of Vertical (V) and Horizontal (H) ingredients of 1976 Koyna earthquake and the coupled system was analyzed in Laplace domain by direct method. Due to the deterioration of the concrete, the H and V displacement responses together with the fundamental period of the body, elongate throughout the lifetime and this reduce the seismic safety of the dam. It was deduced that the ageing dam body will not experience major damages under the Koyna earthquake both at the earlier and later ages. Furthermore, at the heel of the dam, the hydrodynamic pressure responses are decreased by rising the sediment domain depth.

Dynamic Responses of Electrorheological Fluid in Steady Pressure Flow (정상압력 유동 하에서 전기유변유체의 동적 응답)

  • Nam, Yun-Joo;Park, Myeong-Kwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2879-2884
    • /
    • 2007
  • Dynamic responses of electrorheological (ER) fluids in steady pressure flow to stepwise electric field excitations are investigated experimentally. The transient periods under various applied electric fields and flow velocities were determined from the pressure behavior of the ER fluid in the flow channel with two parallel-plate electrodes. The pressure response times were exponentially decreased with the increase of the flow velocity, but increased with the increase of the applied electric field strength. In order to investigate the cluster structure formation of the ER particles, it was verified using the flow visualization technique that the transient response of ER fluids in the flow mode is assigned to the densification process in the competition of the electric field-induced particle attractive interaction forces and the hydrodynamic forces, unlike that in the shear mode determined by the aggregation process.

  • PDF

A closed-form solution for a fluid-structure system: shear beam-compressible fluid

  • Keivani, Amirhossein;Shooshtari, Ahmad;Sani, Ahmad Aftabi
    • Coupled systems mechanics
    • /
    • v.2 no.2
    • /
    • pp.127-146
    • /
    • 2013
  • A closed-form solution for a fluid-structure system is presented in this article. The closed-form is used to evaluate the finite element method results through a numeric example with consideration of high frequencies of excitation. In the example, the structure is modeled as a cantilever beam with rectangular cross-section including only shear deformation and the reservoir is assumed semi-infinite rectangular filled with compressible fluid. It is observed that finite element results deviate from the closed-form in relatively higher frequencies which is the case for the near field earthquakes.

Evolution of the central molecular zone in interacting barred galaxies

  • Hwang, Jeong-Sun;Shin, Jihye;Chun, Kyungwon;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.35.3-35.3
    • /
    • 2015
  • The central molecular zone (CMZ) is a region of rich molecular gas located in the inner few hundred parsecs in barred spiral galaxies. We study the size and morphology evolution of the CMZ of Milky Way-like galaxies both in isolation and in interaction by using N-body/hydrodynamic simulations. Specifically, we examine the gas flows and star formation activities in the central region of the galaxies. We focus in particular on the effects of galaxy interactions, including flybys and minor mergers, on the evolution of the CMZ.

  • PDF