• Title/Summary/Keyword: Hydrodynamic Force and Moment

검색결과 72건 처리시간 0.021초

전산유체역학 해석을 통한 프로펠러의 상하동요 운동 중 유체력 특성 연구 (Computational Fluid Dynamics Analysis for Investigation of Hydrodynamic Force and Moment of a Marine Propeller in Heave Motion)

  • 김민아;김동환;서정화;김명수
    • 대한조선학회논문집
    • /
    • 제61권4호
    • /
    • pp.236-246
    • /
    • 2024
  • The present study aims to identify the effects of the oblique inflow and vertical acceleration on a marine propeller's hydrodynamic force and moment. Computational Fluid Dynamics analysis is performed for a rotating propeller in open water conditions with heave motion after performing validation against experiment in straightforward conditions. The oblique inflow results in a linear increase of the off-axial component of the hydrodynamic force and moment rather than the axial one. Pitch and yaw moments due to the hull motion are dominated by the heave force and the moment arm of the propeller location. Additionally, the vertical acceleration leads to a linear augmentation of off-axial hydrodynamic force and moment, implying the added mass and moment of inertia. Notably, it is found that the off-axial hydrodynamic force and moment are dominated by the oblique inflow velocity rather than the acceleration.

몰수체의 원추형시험에 관한 연구 (Study on Coning Motion Test for Submerged Body)

  • 박종용;김낙완;이기표;윤현규;김찬기;정철민;안경수;이성균
    • 한국해양공학회지
    • /
    • 제29권6호
    • /
    • pp.436-444
    • /
    • 2015
  • A submerged body is sensitive to changes in the roll moment because of the small restoring moment and moment of inertia. Thus, a method for predicting the roll-related hydrodynamic coefficients is important. This paper describes a deduction method for the hydrodynamic coefficients based on the results of a coning motion test. A resistance test, static drift test, and coning motion test were performed to obtain the coefficients in the towing tank of Seoul National University. The sum of the hydrodynamic force, inertial force, gravity, and buoyancy was measured in the coning motion test. The hydrodynamic force was deduced by subtracting the inertial force, gravity, and buoyancy from the measured force. The hydrodynamic coefficients were deduced using the regression method.

요소항력모델을 활용한 선저검사용 ROV 모델링 및 트래킹 시뮬레이션 (Modeling and Tracking Simulation of ROV for Bottom Inspection of a Ship using Component Drag Model)

  • 전명준;이동현;윤현규;구본국
    • 한국해양공학회지
    • /
    • 제30권5호
    • /
    • pp.374-380
    • /
    • 2016
  • The large drift and angle of attack motion of an ROV (Remotely operated vehicle) cannot be modeled using the typical hydrodynamic coefficients of conventional straight running AUVs and specific slender bodies. In this paper, the ROV hull is divided into several simple-shaped components to model the hydrodynamic force and moment. The hydrodynamic force and moment acting on each component are modeled as the components of added mass force and drag using the known values for simple shapes such as a cylinder and flat plate. Since an ROV is operated under the water, the only environmental force considered is the current effect. The target ROV dealt with in this paper has six thrusters, and it is assumed that its maneuvering motion is determined using a thrust allocation algorithm. Tracking simulations are carried out on the ship’s surface near the stern, bow, and midship sections based on the modeling of the hydrodynamic force and current effect.

저속시 선체에 작용하는 유체력 수학모형 정립을 위한 모형시험 방안 연구 (A Study on the Model Test Scheme for Establishing the Mathematical Model of Hydrodynamic Force and Moment Acting on a Slowly Moving Ship)

  • 윤현규;김선영
    • 대한조선학회논문집
    • /
    • 제42권2호
    • /
    • pp.98-104
    • /
    • 2005
  • The mathematical models of hydrodynamic force and moment acting on a ship at low speed range should be established differently from the ones at nominal cruising speed range since a ship moves with large drift angle or rotates in a stationary position. We modified widely used Yoshimura's cross flow model in order to apply the system identification method to estimate parameters in the model. The apparatus and the procedure of free running model test were suggested so that the parameters in the model be estimated. The validity of our proposing modified model and test procedure was confirmed by comparison with the results of simulated model test.

Investigation on hydrodynamic performance of a marine propeller in oblique flow by RANS computations

  • Yao, Jianxi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권1호
    • /
    • pp.56-69
    • /
    • 2015
  • This paper presents a numerical study on investigating on hydrodynamic characteristics of a marine propeller in oblique flow. The study is achieved by RANS simulations on an open source platform - OpenFOAM. A sliding grid approach is applied to compute the rotating motion of the propeller. Total force and moment acting on blades, as well as average force distributions in one revolution on propeller disk, are obtained for 70 cases of combinations of advance ratios and oblique angles. The computed results are compared with available experimental data and discussed.

Estimation of Hydrodynamic Derivatives of Full-Scale Submarine using RANS Solver

  • Nguyen, Tien Thua;Yoon, Hyeon Kyu;Park, Youngbum;Park, Chanju
    • 한국해양공학회지
    • /
    • 제32권5호
    • /
    • pp.386-392
    • /
    • 2018
  • It is necessary to predict hydrodynamic derivatives when assessing the maneuverability of a submarine. The force and moment acting on the vehicle may affect its motion in various modes. Conventionally, the derivatives are determined by performing captive model tests in a towing tank or applying a system identification method to the free running model test. However, a computational fluid dynamics (CFD) method has also become a possible tool to predict the hydrodynamics. In this study, virtual captive model tests for a full-scale submarine were conducted by utilizing a Reynolds-averaged Navier-Stokes solver in ANSYS FLUENT version 18.2. The simulations were carried out at design speed for various modes of motion such as straight forward, drift, angle of attack, deflection of the rudder, circular, and combined motion. The hydrodynamic force and moment acting on the submarine appended rudders and stern stabilizers were then obtained. Finally, hydrodynamic derivatives were determined, and these could be used for evaluating the maneuvering characteristics of the submarine in a further study.

Prediction of the wave induced second order vertical bending moment due to the variation of the ship side angle by using the quadratic strip theory

  • Kim, Seunglyong;Ryue, Jungsoo;Park, In-Kyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권3호
    • /
    • pp.259-269
    • /
    • 2018
  • In this study, the second order bending moment induced by sea waves is calculated using the quadratic strip theory. The theory has the fluid forcing terms including the quadratic terms of the hydrodynamic forces and the Froude-Krylov forces. They are applied to a ship as the external forces in order to estimate the second order ship responses by fluid forces. The sensitivity of the second order bending moment is investigated by implementing the quadratic terms by varying the ship side angle for two example ships. As a result, it was found that the second order bending moment changes significantly by the variation of the ship side angle. It implies that increased flare angles at the bow and the stern of ships being enlarged would amplify their vertical bending moments considerably due to the quadratic terms and may make them vulnerable to the fatigue.

Frequency domain analysis of Froude-Krylov and diffraction forces on TLP

  • Malayjerdi, Ebrahim;Tabeshpour, Mohammad Reza
    • Ocean Systems Engineering
    • /
    • 제6권3호
    • /
    • pp.233-244
    • /
    • 2016
  • Tension Leg Platform (TLP) is a floating structure that consists of four columns with large diameter. The diffraction theory is used to calculate the wave force of floating structures with large dimensions (TLP). In this study, the diffraction and Froude-Krylov wave forces of TLP for surge, sway and heave motions and wave force moment for roll, pitch degrees of freedom in different wave periods and three wave approach angles have been investigated. From the numerical results, it can be concluded that the wave force for different wave approach angle is different. There are some humps and hollows in the curve of wave forces and moment in different wave periods (different wavelengths). When wave incidents with angle 0 degree, the moment of diffraction force for pitch in high wave periods (low frequencies) is dominant. The diffraction force for heave in low wave periods (high wave frequencies) is dominant. The phase difference between Froude-Krylov and diffraction forces is important to obtain total wave force.

힌지형 조파기에 작용하는 비선형 파력 (Nonlinear Fluid Forces on Hinged Wavemakers)

  • Kim, Tae-In;Rocbert T. Hudspeth
    • 한국해안해양공학회지
    • /
    • 제2권4호
    • /
    • pp.208-222
    • /
    • 1990
  • 가변흘수를 갖는 힌지형 조파기에 작용하는 비선형 파력 및 모멘트를 산정하기 위하여 비선형경계식 문제의 2차 근사해를 Stokes의 전개기법을 이용하여 구하였다. 2차파 성분이 파력 및 모멘트에 기여하는 물리적 의미에 대해 상술하였다. 2차파에 의한 비선형성과 조파판의 흘수에 따른 파력 모멘트 변화를 결정할 수 있도록 설계곡선을 제시하였다. 2차파 성분의 전도력 및 모멘트에 기여하는 부분은 조화성분과 상수성분으로 구성된다. 1차파와 2차파 성분을 합성한 파력 및 모멘트의 크기는 선형 조파이론의 값보다 상당한 증가를 보인다. 2차파 성분의 효과는 상대수심과 파고에 따라 달라지며 짧은 흘수를 갖는 조파기에서 상대적으로 더욱 중요하다.

  • PDF

Simulation-Based Prediction of Steady Turning Ability of a Symmetrical Underwater Vehicle Considering Interactions Between Yaw Rate and Drift/Rudder Angle

  • Park, Jeong-Hoon;Shin, Myung-Sub;Jeon, Yun-Ho;Kim, Yeon-Gyu
    • 한국해양공학회지
    • /
    • 제35권2호
    • /
    • pp.99-112
    • /
    • 2021
  • The prediction of maneuverability is very important in the design process of an underwater vehicle. In this study, we predicted the steady turning ability of a symmetrical underwater vehicle while considering interactions between the yaw rate and drift/rudder angle through a simulation-based methodology. First, the hydrodynamic force and moment, including coupled derivatives, were obtained by computational fluid dynamics (CFD) simulations. The feasibility of CFD results were verified by comparing static drift/rudder simulations to vertical planar motion mechanism (VPMM) tests. Turning motion simulations were then performed by solving 2-degree-of-freedom (DOF) equations with CFD data. The turning radius, drift angle, advance, and tactical diameter were calculated. The results show good agreement with sea trial data and the effects on the turning characteristics of coupled interaction terms, especially between the yaw rate and drift angle.