• Title/Summary/Keyword: Hydro-Generator Stator Winding

Search Result 20, Processing Time 0.027 seconds

Analysis of Insulation Characteristic for Small Hydro Generator (소수력발전기 절연특성분석)

  • Oh, Bong-Keun;Chang, Jeong-Ho;Lee, Kwang-Ho;Kang, Dong-Sik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.142-145
    • /
    • 2008
  • Electrical insulation of small hydro generator stator winding is one of the most important parts in generator facilities. Some stator winding insulation problems can be identified through analysis of insulation diagnostic test. So, Diagnosis of stator winding insulation is an important measure of ensuring the safe operation and extending the remaining life of small hydro generator. This paper presents case studies of insulation failure in generator stator windings and the results of insulation diagnostic test for small hydro generator stator windings. Especially, Conducting the insulation diagnostic test before the generator installed in site is very important process to keep the good insulation condition in service.

  • PDF

On-line partial discharge measurement techniques of hydro-generator windings (수력 발전기 권선에서의 운전중 부분방전 측정기법)

  • 황동하;김진봉;김용주;박명수;김택수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.294-300
    • /
    • 1996
  • In hydro-generator, a groundwall insulation of stator windings gradually deteriorates due to mechanical, thermal, electrical and environmental stresses. These stresses combine to result in loose windings, delamination of the stator insulation and/or electrical tracking of the endwinding, all of which can lead to stator insulation failures. Conventionally, off-line tests such as partial discharge measurement, DC/AC current and .DELTA.tan.delta. tests has been used for estimation of winding condition. However, off-line test requires large power supply and generator outage. In addition, major cause of insulation problems such as loose wedges and slot dischages may not be found with off-line diagnoses. This paper introduces the on-line partial discharge measurement techniques using frequency spectrum analyzer(FSA) for the generator stator windings. The experimental results from the UIAM #1 hydro-generator confirms a optimistic application of on-line generator diagnosis method as a reliable tool for evaluation of winding condition.

  • PDF

A Study on the Evaluation Criteria for the Remaining Life of Hydro-Generator Stator Insulation (수력 발전기 고정자 권선의 절연수명 평가기준 설정에 관한 연구)

  • Hwang, D.H.;Kim, Y.J.;Kim, J.B.;Park, M.S.;Kim, H.G.;Lee, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1769-1773
    • /
    • 1996
  • The remaining life of generator stator winding has been the controversial issue amomg many experts in this area. The report from Japan claims that they can predict the remaining life of generator winding, while the North American has the negative opinion about it. This study aimed at verifying the validity of both Japanese criteria and North American argument on evaluation of generator winding insulation. Non destructive and destructive tests were performed on two hydro-generators. The test results showed that the trend analysis of stator winding insulation was the better option.

  • PDF

Evaluation of On-Line Partial Discharge Measurement Techniques on Hydro-Generator (수력 발전기의 운전중 부분방전 측정기법에 대한 신뢰성 평가)

  • Hwang, D.H.;Kim, J.B.;Kim, Y.J.;Park, M.S.;Kim, T.S.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1526-1529
    • /
    • 1994
  • In hydro-generator, a groundwall insulation of stator windings gradually deteriorates due to mechanical, thermal, electrical and environmental stresses. These stresses combine to result in loose windings, delamination of the stator insulation and/or electrical tracking of the end winding, all of which can lead to stator insulation failures. Conventionally, off-line tests such as partial discharge measurement, DC/AC current test and ${\Delta}tan{\delta}$ test has been used for estimation of winding condition. However, off-line test requires large power supply and generator outage. In addition, major cause of insulation problems such as loose wedges and slot discharges may not be found with off-line diagnoses. This paper describes the on-line partial discharge measurement techniques in the generator stator windings. The experimental results from the UIAM #1 hydro-generator confirms a optimistic application of on-line generator diagnosis method as a reliable tool for evaluation of winding condition.

  • PDF

A study on the Analysis of Insulation Aging for Generator stator windings (수력발전기 고정자권선의 절연열화 분석)

  • Byun, D.G.;Oh, B.K.;Kang, D.S.;Lim, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2072-2074
    • /
    • 2005
  • This test was performed to assess the insulation condition of the stator winding of 3.45kV hydro generator in insulation deterioration condition which was due to long service period(30years) since installed We extracted 12 stator wingdings from the hydro generator core, cut the stator windings into three parts(Middle winding part, slot winding part, end wingding part), and evaluated the insulation condition to know the deterioration condition of each parts. This insulation diagnostic tests include AC current, dissipation factor, and partial discharg test.

  • PDF

Site Evaluation and Application of the On-line and Off-line Test for the 13[kV] Class Hydropower Generator Stator Windings (13[kV]급 수력발전기 고정자 권선의 운전 및 정지 중 진단시험 현장적용 평가 및 분석)

  • Chang, Jeong-Ho;Lee, Dong-Keun;Lee, Heung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.73-82
    • /
    • 2011
  • The solid insulation system of stator windings in high voltage rotational machines is usually aging in accordance with long time operation. The partial discharge test have been known to check whether insulation deterioration exist or not, and the PD test can effectively diagnose a solid insulation condition regardless of during operation(on-line) or not(off-line). The on-line PD measurement have proven to be a successful technique in monitoring stator insulation condition nowadays. This paper describes the characteristics of comparing the on-line PD measurement data using PDMS-HG(Partial Discharge Monitoring System for Hydro-electric Generator) installed in field with the off-line diagnosis measurement data(insulation resistance, winding resistance, PI, ${\Delta}tan{\delta}$ and PD) on hydro generator(13[kV]) stator windings. These results make good use of managing rotational machines through evaluating the solid insulation condition of stator windings.

Assessment of Insulation Condition between Diagnosis and Impregnation for Hydro-Generator (수력발전기의 절연보강 전${\cdot}$후 절연상태 비교평가)

  • Byun il-hwan;Lee Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1124-1126
    • /
    • 2004
  • The measurements were performed to assess the insulation deterioration condition of the stator winding of Dae-Cheong hydro-generator ${\sharp}2$ which had been in service after being constructed 1980. After repair of the stator winding insulation. we conducted insulation diagnostic tests which include resistance, polarization index(P. I). AC current, dissipation factor($Tan{\delta}$) and partial discharges ($Q_{max}$). The results of diagnostic tests were compared to the previous records. On the basis of these test results. this paper tried to present the importance of insulation repair for the generator stator winding.

  • PDF

Assessment of Insulation Condition between Diagnosis and Impregnation for Hydro-Generator (대용량 수차발전기의 절연진단과 절연보수 상관관계 평가)

  • Oh, Bong-Keun;Jung, Jin-Dal;Lee, Kwang-Ho;Kim, Hyun-Il;Kwak, Hee-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2004.05b
    • /
    • pp.39-41
    • /
    • 2004
  • The measurements were performed to assess the insulation deterioration condition of the stator winding of Dae-Cheong hydro-generator #2 which had been in service after being constructed 1980. After repair of the stator winding insulation, we conducted insulation diagnostic tests which include resistance, polarization index(P.I), AC current, dissipation factor($Tan\delta$) and partial discharges ($Q_{max}$). The results of diagnostic tests were compared to the previous records. On the basis of these test results, this paper tried to present the importance of insulation repair for the generator stator winding.

  • PDF

Analysis of Parameters on Partial Discharges from Insulation Defects of used Hydro Generator Stator Windings (수력발전기 고정자 노후권선의 모의결함 시편에 대한 부분방전 파라미터 변화 분석)

  • Oh, Bong-Keun;Kim, Hyun-Il;Kang, Seong-Hwa;Lim, Kee-Joe
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.645-649
    • /
    • 2007
  • Partial discharge(PD) test for simulated insulation defects of used hydro generator stator winding was conducted to analyze the PD Parameters. Simulated insulation defects are classified by 5 types corona, slot, internal, multi and aging defect. Phase resolved partial discharge, statistical parameter (skewness, kurtosis), PD magnitude as a function of the test voltage(Q-V curve) and PD magnitude change under test voltage for 2 minutes are used as PD parameters. The analysis of PD parameters by 4 types are proved to be useful methods. In particular, PD parameter characteristics of aging defect could help to assess the aging condition of stator winding because aging defect has more weak insulation strength than other insulation defects : PD distribution is wide and flat, PD rises rapidly near $0^{\circ}\;and\;180^{\circ}$ and Q-V curve rises sharply and then gently drops.

Analysis of the Insulation aging for the stator winding (고정자권선의 절연열화 특성분석)

  • Oh, Bong-Keun;Choi, Kyo-Nam;Han, Chang-Dong;Lim, Kee-Joe
    • Proceedings of the KIEE Conference
    • /
    • 2006.07e
    • /
    • pp.23-24
    • /
    • 2006
  • Stator winding of hydro generator is gradually deteriorated by multi-stress and steady degradation of insulation results in insulation breakdown. The region where insulation breakdown occurs in stator winding is part where the multi-stress causes the defect of insulation material and electrical stress has been concentrated. Therefore, we judged locations of insulation breakdown to be varied according to various stress factors in service. In this paper, we drew the stator winding of hydro generators which has run for a long time and separated it into 3 parts(central part, end winding part, drawing part) according to the positions laid on the core. We performed electrical and thermal stress on these specimens for 1000 hrs under the same condition, measured the condition regularlyand analyzed the insulation status of each winding by performing partial discharge test. In addition, we analyzed the trend of partial discharge concerning specimens that caused the insulation breakdown during aging.

  • PDF