• Title/Summary/Keyword: Hydriding

Search Result 71, Processing Time 0.017 seconds

Mg2NiHx-5wt% CaO 복합재료의 수소화 속도 (Hydriding Kinetics on Mg2NiHx-5wt% CaO Composites)

  • 신효원;황준현;김은아;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제32권3호
    • /
    • pp.156-162
    • /
    • 2021
  • Mg hydride has a relatively high hydrogen storage amount of 7.6wt%, and inexpensive due to abundant resources, but has high reaction temperature and long reaction time because of treble oxidation reactivity and upper activation energy. Their range of applications could be further extended if their hydrogenation kinetics and degradation behavior could be improved. Therefore, the effect of CaO has improved the hydrogenation kinetics and slowed down the degradation. This study focused on investigating whether to improve the hydrogenation kinetics by synthesizing Mg2NiHx-5wt% CaO composites. The Mg2NiHx-5wt% CaO composites have been synthesized by hydrogen induced mechanical alloying. The synthesized composites were characterized by performing X-ray diffraction, Scanning Electron Microscopy, Brunauer-Emmett-Teller, Thermogravimetric, and Sivert's type automatic pressure-composition-temperature analysis. Hydriding kinetics were performed using an automatic PCT measurement system and evaluated over the temperature range of 423 K, 523 K, and 623 K. As a result of calculating the hydrogen adsorption amount through the hydrogenation kinetics curve, it was calculated as about 0.42wt%, 0.91wt%, and 1.15wt%, the highest at 623 K and the lowest at 423 K.

화성처리 및 성형화에 따른 금속수소화물의 활성화거동 (Activation Characteristics of Metal Hydride Chemical-Treated and Fixed in an Adhesive)

  • 한호경;박찬교
    • 한국수소및신에너지학회논문집
    • /
    • 제6권2호
    • /
    • pp.85-90
    • /
    • 1995
  • Activation behavior, hydriding rate and disintegration were tested for hydrogen storage alloy particles fixed in an adhesive after treating with inorganic solution. Commertial adhesive as a binder was used. Chemical-treated particles showed the best characteristics for activation and a little effect of prevention the break down of the powders themselves after several repeated operations. Furthermore activation characteristics were found to show a similar trend to chemical-treated powders even in the fixed one with an adhesive, except for a slight decrease in reaction velocity.

  • PDF

마이크로 캡슐화한 수소저장합금 분말 및 그 성형체의 수소흡수·방출 특성 (Hydrogen Absorption and Desorption Characteristics of Microencapsulated Hydrogen Storage Alloy Powders and Their Compacts)

  • 김찬중;최병진;김대룡
    • 한국수소및신에너지학회논문집
    • /
    • 제4권1호
    • /
    • pp.41-50
    • /
    • 1993
  • The hydrogen absorption and desorption characteristics of microencapsulated (CFM)$Ni_{4.7}Al_{0.2}Fe_{0.1}$ and $MmNi_4Fe$ powder with Ni and/or Cu by means of chemical plating method have been investigated. Initial hydrogen absorption rate and activation property were increased remarkably by encapsulation and subsequent compacting. Pellets abtained by compacting of Cu-encapsulated fine powder have fairly good strength even after 30 cycles of hydriding and dehydriding. Encapsulated alloy powder and their compacts show a good resistance to degradation by $O_2$ or CO in hydrogen.

  • PDF

금속수소화물을 이용한 냉열발생형 열펌프의 성능 (Operating Performance of Metal Hydride Heat Pump for Cooling)

  • 박찬교;구기량부;수전정이랑
    • 한국수소및신에너지학회논문집
    • /
    • 제4권1호
    • /
    • pp.21-30
    • /
    • 1993
  • The operational characteristics of a metal hydride heat pump system are strongly dependent on the amound of hydrogen gas transferred by hydriding and dehydriding reactions between the reactors under dynamic conditions. A new metal hydride heat pump combined with hydrogen compressor was constructed and the dependency of its operating conditions on such as cycle time, amount of hydrogen to be transferred between two reacting metal hydride reactors, operating temperature, and heat transmission characteristics of the reactors was investigated to find the optimum operating efficiency. These conditions were also evaluated in connection with the cooling output and hydrogen compressor connected to the system in order to enhance the total efficiency.

  • PDF

수소동위원소 계량·공급기술 (Hydrogen Isotopes Accountancy and Storage Technology)

  • 구대서;정흥석;정동유;이정민;윤세훈;조승연;정기정
    • 한국수소및신에너지학회논문집
    • /
    • 제23권1호
    • /
    • pp.49-55
    • /
    • 2012
  • Hydrogen isotopes accountancy and storage are important functions in a nuclear fusion fuel cycle. The hydrogen isotopes are safely stored in metal hydride beds. The tritium inventory of the bed is determined from the decay heat of tritium. The decay heat is measured by circulating helium through the metal hydride bed and measuring the resultant temperature increase of the helium flow. We are reporting our preliminary experimental results on the hydrogen isotopes accountancy and storage performance in a metal hydride bed.

교반관법에 의한 Mg 기지 수소저항합금의 대량제조와 반복적 수소화 반응에 따른 수소화 특성 및 열화특성 평가 (Mass Production of Mg based Hydrogen Absorbing Alloys and Evalution of Hydrogenation and Degradation Properties by Hydriding/Dehydriding Cyclic Test)

  • 하원;이성곤;홍태환;김영직
    • 한국수소및신에너지학회논문집
    • /
    • 제13권1호
    • /
    • pp.13-23
    • /
    • 2002
  • Hydrogenation properties of Mg-Ni and Mg-Ti-Ni alloys were investigated by Pressure-Composition Isotherm (PCI) test. Those alloys were fabricated by a new alloying method, Rotation-Cylinder Method (RCM). The as-cast microstructure of Mg-10 mass% Ni alloy consists of an island-like hydride forming $\alpha$-Mg phase and the eutectic structure. After 350 cyclic tests, Mg-lO mass % Ni alloy was pulverized into fine particles of 100 nm. The fine particles, which have a large specific surface area, are highly reactive with hydrogen. However, extreme pulvehzation can separate Mg from $Mg_2Ni$ in the eutectic structure, so $Mg_2Ni$ of the eutectic structure cannot behave as a dissociated hydrogen supplier.

금속수소화물 수소 저장 용기 내부의 수소흡장에 대한 수치해석적 연구 (Numerical Study of Hydrogen Absorption in a Metal Hydride Hydrogen Storage Vessel)

  • 남진무;강경문;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제21권4호
    • /
    • pp.249-257
    • /
    • 2010
  • In this paper, a three-dimensional hydrogen absorption model is developed to precisely study hydrogen absorption reaction and resultant heat and mass transport phenomena in metal hydride hydrogen storage vessels. The 3D model is first experimentally validated against the temperature evolution data available in the literature. In addition to model validation, the detailed simulation results shows that at the initial absorption stage, the vessel temperature and H/M ratio distributions are uniform throughout the entire vessel, indicating that the hydrogen absorption is so efficient during the early hydriding process and thus local cooling effect is not influential. On the other hand, nonuniform distributions are predicted at the latter absorption stage, which is mainly due to different degrees of cooling between the vessel wall and core regions. This numerical study provides the fundamental understanding of detailed heat and mass transfer phenomena during hydrogen absorption process and further indicates that efficient design of storage vessel and cooling system is critical to achieve fast hydrogen charging and high hydrogen storage efficiency.

아크용해법에 의한 Ti-Cr-Nb합금의 제조와 수소와 특성 평가 (Evaluation of Hydrogenation Properties on Ti-Cr-Nb Alloys Manufactured by Arc Melting)

  • 이영근;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제19권6호
    • /
    • pp.482-489
    • /
    • 2008
  • Ti-Cr alloys consist of BCC solid solution, C36, C14 and C15 Laves phase at high temperature. Among others, the BCC solid solution phase was reported to have a high hydrogen storage capacity. However, activation, wide range of hysteresis at hydrogenation/dehydrogenation, and degradation of hydrogen capacity due to hydriding/dehydriding cycles must be improved for its application. In this study, to improve such problems, we added a Nb. For attaining target materials, Ti-10Cr-xNb(x=1, 3, 5wt.%) specimens were prepared by arc melting. The arc melting process was carried out under argon atmosphere. As-received specimens were characterized using XRD(X-ray diffraction), SEM(Scanning Electron Microscopy) with EDX(Energy Dispersive X-ray) and TG/DSC(Thermo Gravimetric Analysis/Differential Scanning Calorimetry). In order to examine hydrogenation behavior, the PCI(pressure-Composition-Isotherm) was performed at 293, 323, 373 and 423K.

Mg-13.5wt%Ni 합금 수소화합물의 수소방출에 대한 부피법에 의한 열분석 (Volumetric Thermal Analysis of Hydrogen Desorption from Mg-13.5wt%Ni Hydride)

  • 한정섭;박경덕
    • 한국수소및신에너지학회논문집
    • /
    • 제26권4호
    • /
    • pp.308-317
    • /
    • 2015
  • To investigate the effect of microstructure on the formation of the desorption peak, the volumetric thermal analysis technique (VTA) was applied to the Mg-13.5 wt% Ni hydride system. The sample made by the HCS (hydriding combustion synthesis) process had two kinds of Mg microstructures. Linear heating was started with various constant heating rates. Only one peak was appeared in the case of the small initial hydrogen wt% (0.83 wt%). Yet, two peaks were appeared with increasing initial hydrogen wt% (1.85 and 3.73 wt%) when only Mg was hydrogenated. The first peak was formed through the evolution of hydrogen from $MgH_2$, made by eutectic Mg. The second peak was formed through the evolution of hydrogen from $MgH_2$, made by primary Mg. Therefore, this result shows that the microstructure also has a considerable effect on forming the desorption peak. We have also derived the hydrogen desorption equations by VTA to get apparent activation energy when the rate-controlling step for the desorption of the hydrided system is the diffusion of hydrogen through the ${\alpha}$ phase and the chemical reaction ${\beta}{\rightarrow}{\alpha}$.

감손 우라늄 베드 수소 탈장 성능 (Dehydriding Performance in a Depleted Uranium Bed)

  • 구대서;김연진;윤세훈;정흥석
    • 한국수소및신에너지학회논문집
    • /
    • 제27권1호
    • /
    • pp.22-28
    • /
    • 2016
  • It is necessary to store and supply hydrogen isotopes for Tokamak operation. A storage and delivery system (SDS) is used for storing hydrogen isotopes as a metal hydride form. We designed and fabricated a depleted uranium (DU) bed to store hydrogen isotopes. The rapid storage of hydrogen isotopes is very important not only for safety reasons but also for the economic design and operation of the SDS. The delivery rate at the desorption temperatures without the operation of a dry pump was analyzed in comparison with that with the operation of the dry pump. The effect of the initial desorption temperatures on the dehydriding of the DU without the operation of the dry pump was measured. The effect of the initial desorption temperatures on the dehydriding of DU with the operation of the dry pump was also measured and analyzed. The primary pressure on the desorption temperatures without the operation of the dry pump was analyzed in comparison with that with the operation of the dry pump. The temperature gradient of the coil heater and the primary vessel was also analyzed. Our results will be used to develop pilot scale hydrogen isotope processes. It was confirmed that dehydriding of a medium-scale DU bed has enabled without the operation of the dry pump.