• Title/Summary/Keyword: Hydraulic-Diameter

Search Result 477, Processing Time 0.034 seconds

Evaluation of Characteristics and Reliability of an Auger Crane with Built-in Hydraulic Extender (유압식 확장기가 내장된 오거 크레인의 특성 및 신뢰성 평가)

  • Kim, Jeom-Sik;Kwon, Sin-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.77-82
    • /
    • 2010
  • This study evaluated the characteristics and reliability of an auger crane with a built-in hydraulic extender. The field test of the hydraulic extender was performed with the hydraulic lines filled with hydraulic fluid and free of air. The pressure generated during the test was measured with a digital pressure gauge. The crane was considered to have undergone one cycle of the excavation process after it had performed excavation under three conditions at the same location. This process was performed three times in total. From the results of the excavation using the hydraulic extender, it was found that the maximum pressure and torque measured were 19.9 [MPa] and 895.4 [$kgf{\cdot}m$], respectively. The rotation force of the auger crane generated at this time signifies a horizontal force. If the excavation diameter of the auger crane is increased, the rotation speed is reduced causing the circumferential speed to also be reduced. The torsional shear stress of the extendable auger crane was calculated to be approximately 23.5 [MPa]. However, the rotation shaft material used for this system was carbon steel for machine structural use (SM45C). Since the minimum torsional yield stress is greater than 150 [MPa] according to KS D 3752, it means the equipment has secured a safety factor greater than 6. Therefore, it was found that when performing work using the extendable auger crane, it exhibited no problems with the safety and reliability of its shaft.

Design and fabrication of 2MN hydraulic force standard machine (2MN 유압식 힘 표준기의 설계 및 제작)

  • Kang, D.I.;Song, H.K.;Lee, J.T.;Ahn, B.D.;Kim, C.Y.;Lee, J.Y.;Ahn, B.C.;Cheong, K.K.;Jeon, Y.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.33-41
    • /
    • 1994
  • For the establishment of large force standard and the accurate measurement of large force, 2MN hydraulic force standard machine which consists of loading frame, deadweight machine, two ram/cylinder systems and hydraulic control system was designed and fabricated. Measurement results of shapes for tow ram/cylinders reveal that the ratio of effective area is 200.094. The relative deviation of force stability for the machine is about .+-. 0.01% at 2MN and is less than .+-. 0.005% below 2MN. This machine may be widely used to calibrate the force measuring devices in industry and to test the force sensors.

  • PDF

Effect of water temperature and soil type on infiltration

  • Mina Torabi;Hamed Sarkardeh;S. Mohamad Mirhosseini;Mehrshad Samadi
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.445-452
    • /
    • 2023
  • Temperature is one of the important factors affecting the permeability of water in the soil. In the present study, the impact of water temperature on hydraulic conductivity (k) with and without coarse aggregations by considering six types of soils was analyzed. Moreover, the effect of sand and gravel presence in the soil was investigated through the infiltration based on constant and inconstant water head experiments. Results indicated that by increasing the water temperature, adding gravel to sandy soil caused the hydraulic conductivity to raise. It is supposed that the gravel decreased the contact surface between the water and the soil aggregates. It is deduced that due to decreasing kinetic energy, k tends to have lower values. Furthermore, adding the sand to sandy silt-clay soil showed that the sand did not have a marginal effect on the variation of k since the added sand cannot increase the contact surface like gravel. Finally, increasing the main diameter of the soil will increase the effect of the water temperature on hydraulic conductivity.

Mechanical behavior and numerical modelling of steel fiber reinforced concrete under triaxial compression

  • Bu Jingwu;Xu Huiying;Wu Xinyu;Chen Xudong;Xu Bo
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.137-149
    • /
    • 2024
  • In order to study the triaxial mechanical behavior of steel fiber reinforced high performance concrete (SFRHPC), the standard triaxial compression tests with four different confining pressures are performed on the cylindrical specimens. Three different steel fiber volumes (0, 1% and 2%) are added in the specimens with diameter of 50 mm and height of 100 mm. Test results show that the triaxial compressive strength and peak strain increase with the increasing of fiber content at the same confining pressure. At the same steel fiber content, the triaxial compressive strength and peak strain increases with the confining pressure. The compressive strength growth rate declines as the confining pressure and steel fiber content increases. Longitudinal cracks are dominant in specimens with or without steel fiber under uniaxial compression loading. While with the confining pressure increases, diagonal crack due to shear is obvious. The Mohr-Coulomb criterion is illustrated can be used to describe the failure behavior, and the cohesive force increases as steel fiber content increases. Finally, the numerical model is built by using the PFC3D software. In the numerical model a index is introduced to reflect the effect of steel fiber content on the triaxial compressive behavior. The simulating stress-strain curve and failure mode of SFRHPC are agree well with the experimental results.

An analysis on stability of riprap considering hydraulic characteristics of flow around joint revetment (연결호안 주변 흐름의 수리적 특성을 고려한 사석호안의 안정성 분석)

  • Kim, Sooyoung;Kim, Hyung-Jun;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.12
    • /
    • pp.1035-1044
    • /
    • 2016
  • In joint portions of the levee and the barrier, complex 3-dimensional flow was generated and collapse of revetment occurred frequently. For these reasons, it is necessary to install the joint revetment with greater stability as compared with the general revetment at the joint portions. However, design criteria for joint revetment was not presented in River Design Criteria (KWRA, 2009). Therefore it is necessary to research for engineering design of the joint revetment. In this study, hydraulic experiments were performed under various flow conditions in order to realize the collapse conditions of riprap and carried out in 20.0 m straight open channel with one side levee and the width was 4.0 m. The diameter of riprap covered around joint revetment was 0.03 m and the inlet discharges were $0.5{\sim}0.8m^3/s$. The numerical simulations were performed under same conditions with experiment. as results of this numerical simulations, the influence range was confirmed from the distribution of flow characteristics and shear stress. As a result, the riprap diameter of the joint revetment was calculated from 4.1 to 6.9 times greater than that of general revetment. As the inlet discharge was large, the range of vulnerable area was developed long in the downstream direction despite of same withdrawal velocity of riprap. Through this study, the methods of calculating the riprap diameter and influence range were proposed according to hydraulic characteristics of flow around joint revetment. At a later study, if additional experiments about effect of flood plane and various types of barrier is applied, it is expected that rational design method with stability of joint revetment can be proposed.

Heat Transfer and Frictions in the Rectangular Divergent Channel with Ribs on One Wall

  • Lee, MyungSung;Ahn, SooWhan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.352-357
    • /
    • 2016
  • An investigation of ribbed divergent channel was undertaken to determine the effect of rib pitch to height ratio on total friction factor and heat transfer results in the fully developed regime. The ribbed divergent rectangular channel with the channel exit hydraulic diameter ($D_{ho}$) to inlet channel hydraulic diameter ($D_{hi}$) ratio of 1.16 with wall inclination angle of 0.72 deg, at which the ratios (p/e) of 6,10, and 14 are considered. The ribbed straight channel of $D_{ho}/D_{hi}=1.0$ were also used. The ribbed divergent wall is manufactured with a fixed rib height (e) of 10 mm and the ratio of rib spacing (p) to height 6, 10, and 14. The measurement was run with range of Reynolds numbers from 24,000 to 84,000. The comparison shows that the ratio of p/e=6 has the greatest thermal performance in the divergent channel under two constraints; identical mass flow rate and identical pressure drop.

The Effects of Staggered Rows of Rectangular Shaped Holes on Film Cooling (엇갈린 배열의 사각홀이 막냉각에 미치는 영향)

  • Kim, Young-Bong;Rhee, Dong-Ho;Lee, Youn-Seok;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.304-314
    • /
    • 2004
  • An experimental study has been conducted to measure the temperature fields and the local film cooling effectiveness for two and three staggered rows of the rectangular shaped-holes with various blowing rates. The hydraulic diameter of rectangular-shaped hole is 10mm. To compare with the film cooling performance of rectangular-shaped hole, two kinds of circular holes are tested. One has the same hydraulic diameter as the rectangular hole and the other has the same cross sectional area. Also, rectangular holes with expanded exit with same inlet area as rectangular ones are tested. Temperature fields are measured using a thermocouple rake attached on three-axis traversing system. Adiabatic film cooling effectiveness on the surface are obtained based on experimental results of thermochromic liquid crystals. The film cooling effectiveness is measured for various blowing rates and compared with the results for the cylindrical holes. In case of 2 rows, the rectangular holes has better performance than circular holes due to its slot-like geometry. In case of 3 rows, the effecta of hole shape is not clear.

Characteristics of Heat Transfer in the Ribbed Rectangular Channel with Variable Heating Condition

  • Kim Won-Cheol;Putra Ary Bachtiar Krishna;Kang Ho-Keun;Ahn Soo-Whan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.1
    • /
    • pp.10-16
    • /
    • 2007
  • Surface heat transfer of a fully developed turbulent air flow in a $45^{\circ}$ inclined ribbed square duct with two and four heating walls was experimentally investigated, at which the experimental works were performed for Reynolds numbers ranging from 7,600 to 24,900. The pitch-to-rib height ratio, p/e was kept at 8 and rib-height-to-channel hydraulic diameter ratio, $e/D_h$ was kept at 0.0667. The channel length-to-hydraulic diameter ratio, $L/D_h$ was 60. The heat transfer coefficient values were decreased with the increase in the number of heating walls. Results of this investigation could be used in various applications of internal channel turbulent flow involving roughened walls.

Pressure Drop Characteristics in a Coolant Passage With Turning Region and Rotation (냉각유로 내 곡관부 및 유로의 회전이 압력강하에 미치는 영향)

  • Kim, Kyung-Min;Cho, Hyung-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.2 s.41
    • /
    • pp.32-40
    • /
    • 2007
  • The present study investigated local pressure drop in a rotating smooth square duct with turning region. The duct has a hydraulic diameter $(D_h)$ of 26.7mm and a divider wall of 6.0mm or $0.225D_h$. The distance between the tip of the divider and the outer wall of the duct is $1.0D_h$. The Reynolds number (Re) based on the hydraulic diameter is kept constant at 10,000, and the rotation number (Ro) is varied from 0.0 to 0.20. The pressure coefficient distribution $(C_p)$, the friction factor (f) and the thermal performance $({\eta})$ are presented on the leading, the trailing and the outer surfaces. It is found that the curvature of the $180^{\circ}-turn$ produces Dean vortices that cause the high pressure drop in the turning region. The duct rotation results in the pressure coefficient discrepancy between the leading and trailing surfaces. That is, the high pressure values appear on the trailing surface in the first-pass and on the leading and side surfaces in the second-pass. As the rotation number increases, the pressure discrepancy enlarges. In the fuming region, a pair of the Dean vortices in the stationary case transform into one large asymmetric vortex cell, and then the pressure drop characteristics also change.