• Title/Summary/Keyword: Hydraulic unit

Search Result 334, Processing Time 0.028 seconds

The Compressive Strength and Durability Properties of Polypropylene Fiber Reinforced EVA Concrete (폴리프로필렌 섬유 보강 EVA 콘크리트의 압축강도 및 내구성)

  • Nam, Ki Sung;Sung, Chan Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.11-19
    • /
    • 2015
  • The important properties of EVA (ethylene vinyl acetate) redispersible polymer was waterproof, densification of internal pore space of concrete and ball bearing and micro filler. Also, the significant role of polypropylene(PP) fiber was crack control and blockade of movement for deterioration factors. The most studies for EVA were limited in the field of mortar and PP fiber reinforced concrete had been studied in the state of being restricted unit water content, rich mix and mixing much of the fiber without considering construction site. Therefore, the control mix design were applied in ready mixed concrete using 10 % fly ash of total cement weight used in batch plant. On the basis of control mix design, EVA contents ranging from 0 % to 10 % of total cement weight and PP fiber contents ranging from 0 % to 0.5 % of EVA concrete volume were used in the mix designs. The results showed the maximum compressive strength value was measured at EVA 5.0 % and PP fiber 0.1 %, the minimum water absorption ratio was at EVA 10 % and PP fiber 0 %, the durability factor for freezing and thawing resistance was at EVA 5.0 % and PP fiber 0.3 % and the minimum weight reduction ratio of resistance to sulfuric acid attack was at EVA 10 % and PP fiber 0.5 % after curing age 42days. Meanwhile, From these results, PP fiber reinforced EVA concrete would be very benefit, if each optimal mix types were used in hydraulic structures, underground utilities and agricultural structures.

Restoration design of step-pool sequence in mountain streams (산지하천의 스텝-풀 연속체 복원설계)

  • Kim, Ki Heung
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.1
    • /
    • pp.29-43
    • /
    • 2020
  • The purpose of this study is to propose the design criteria and detailed design model by reviewing the issues related to geometry, formation process, destruction process, hydraulic function, restoration and ecological function of the step-pool from the existing research results, to apply the step-pool sequences to river restoration. Based on the analysis and review results, the design criteria for the structure and size of the step-pool are presented as ratio of the step spacing and the channel width, ratio of the unit step slope and channel slope, and ratio of step height and the particle size. To ensure structural stability of the step, stability analysis method of overturning based on the keystone theory was proposed as a design criterion. As a detailed design concept, a layout model was proposed by applying the imbricating structure of keystones and arch stones to the planar, longitudinal and transverse configurations of the step-pool.

Application of Free Water Surface Constructed Wetland for NPS Control in Livestock Watershed Area (축산단지 비점오염물질 저감을 위한 자유수면형 인공습지 적용)

  • Lee, Jeong-Yong;Kang, Chang-Guk;Lee, So-Young;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.481-488
    • /
    • 2011
  • Various development activities have lead to the destruction of the ecosystem such as natural wetlands. In order to protect these natural wetlands, the Ministry of Environment (MOE) in Korea enacted the Wetland Conservation Act in 1999 and designated protected areas for wetland conservation. The MOE adapted the use of Best Management Practices (BMP) such as retention ponds and constructed wetlands to treat the polluted water before entering the water system. One of these projects was a free-water surface flow (FWS) constructed wetland built as a secondary treatment unit for piggery wastewater effluent coming from a livestock wastewater treatment facility. Water quality monitoring for the constructed wetland was conducted during rainfall events. The results showed that the average removal efficiencies of TSS, BOD, TN, TP were 86, 60, 45, 70%, respectively. It was observed that the removal efficiency of particulate matter and phosphorus was high compared to nitrogen. Therefore, a longer hydraulic retention time was needed in order to improve the treatment efficiency of nitrogen. The results of this study can contribute to the wetland design, operation and maintenance of constructed wetlands.

Prediction of Stability Number for Tetrapod Armour Block Using Artificial Neural Network and M5' Model Tree (인공신경망과 M5' model tree를 이용한 Tetrapod 피복블록의 안정수 예측)

  • Kim, Seung-Woo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.109-117
    • /
    • 2011
  • It was calculated using empirical formulas for the weight of Tetrapod, which was a representative armor unit in the rubble mound breakwater in Korea. As the formulas were evaluated from a curve-fitting with the result of hydraulic test, the uncertainty of experimental error was included. Therefore, the neural network and M5' model tree were used to minimize the uncertainty and predicted the stability number of armor block. The index of agreement between the predicted and measured stability number was calculated to assess the degree of uncertainty for each model. While the neural network with the highest index of agreement have an excellent prediction capability, a significant disadvantage exists that general designers can not easily handle the method. However, although M5' model tree has a lower prediction capability than the neural network, the model tree is easily used by the designers because it has a good prediction capability compared with the existing empirical formula and can be used to propose the formulas like an empirical formula.

Structural and Layout Design Optimization of Ecosystem Control Structures(1) -Characteristics of Mooring Force and Motion Control of the Longline Type Scallop Culturing Facility- (생태계 제어 시설물의 설계 및 배치 최적화(1) -연승식 양식시설의 계류력 특성 및 동요저감에 관한 연구-)

  • RYU Cheong-Ro;KIM Hyeon-Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.1
    • /
    • pp.35-48
    • /
    • 1995
  • To develop the optimal design method for the longline type scallop culturing facilities in the open sea numerical calculations and hydraulic model experiments are carried out for the stability and function optimization. Using the results for the motion and tension of the facilities, stable design concepts and effects of motion control system by vertical anchor and resistance discs art discussed. The results of this study that can be applied to the design are as follows: 1) Total external forces by design wave $(H_{1/3}\;=\;6,7\;m,\;T_{1/3}\;=\;12sec)$ at the coastal waters of Jumunjin for unit facility (one main line) are estimated to 5-20 tons, and required anchor weights are 10-40 tons in the case of 2-point mooring system. Though the present facilities are stable to steady currents, but is unstable to the extreme wave condition of return period of 10 years. 2) The dimensions and depth of array systems must be designed considering the ecological environments as well as the physical characteristics including the mooring and holding forces that are proportional to the length and relative depth of main line to wave length, and the number of buoys and nets. 3) Oscillation of the facility is influenced by water particle motion and the weight of hanging net, and is excited at both edge, especially at the lee side. To reduce the motion of the nets, the vertical anchoring system and the resistence disc method are recommended by the experimental results, 4) The damage of rope near the anchor by abrasion should be prevented using the ring-type connection parts or anchor chains.

  • PDF

Impact of Media Type and Various Operating Parameters on Nitrification in Polishing Biological Aerated Filters

  • Ha, Jeong-Hyub;Ong, Say-Kee;Surampalli, R.
    • Environmental Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.79-84
    • /
    • 2010
  • Three biological aerated filters (BAFs) composed of a PVC pipe with a diameter of 75 mm were constructed and operated at a waste-water temperature at $13^{\circ}C$. The media used for each BAF were: 5-mm gravel; 5-mm lava rock; 12.5-mm diameter by 15-mm long plastic rings, all with a media depth of 1.7 m. The feedwater, which simulated the effluent of aerated lagoons, had influent soluble chemical oxygen demand (sCOD) and ammonia concentrations of approximately 50 and 25 mg/L, respectively. For a hydraulic retention time (HRT) of two hours without recirculation, ammonia percent removals were 98.5, 98.9, and 97.8%, for the gravel, lava rock, and plastic rings, respectively. By increasing the effluent recirculation from 100 to 200% for an HRT of one hour, respective ammonia removals improved from 90.1 to 96, 76.5 to 90, and 65.3 to 79.5% for gravel, lava rock, and plastic rings. Based on the ammonia and sCOD loadings for different HRTs, the estimated maximum ammonia loading was approximately 0.6 kg $NH_3-N/m^3$-day for the three BAFs of different media types. The zero-order biotransformation rates for the BAF with gravel were found to be higher than the lava rock and plastic ring media. The results ultimately showed that BAF can be used as an add-on system to aerated lagoons or as a secondary treatment unit to meet ammonia discharge limits.

GPS-X Based Modeling on the Process of Gang-byeon Sewage Treatment Plant and Design of Recycle Water Treatment Process (GPS-X 기반 모델링에 의한 강변사업소 처리효율 분석 및 반류수 처리 공정 설계)

  • Shin, Choon Hwan
    • Journal of Environmental Science International
    • /
    • v.25 no.11
    • /
    • pp.1493-1498
    • /
    • 2016
  • The efficiencies of Gang-Byeon sewage treatment facilities, which are based on GPS-X modelling, were analysed and used to design recycle water treatment processes. The effluent of an aeration tank contained total kjeldahl nitrogen (TKN) of 1.8 mg/L with both C-1 and C-2 conditions, confirming that most ammonia nitrogen ($NH_3{^+}-N$) was converted to nitrate nitrogen ($NO_3{^-}-N$). The concentrations of $NH_3{^+}-N$ and $NO_3{^-}-N$ were found to be 222.5 and 227.2 mg/L, respectively, with C-1 conditions and 212.2 and 80.4 mg/L with C-2 conditions. Although C-2 conditions with higher organic matter yielded a slightly higher nitrogen removal efficiency, sufficient denitrification was not observed to meet the discharge standards. For the total nitrogen (T-N) removal efficiency, the final effluent concentrations of T-N were 293.8 mg/L with biochemical oxygen demand (BOD) of 2,500 mg/L, being about 1.5 times lower than that (445.3 mg/L) with BOD of 2,000 mg/L. Therefore, an external carbon source to increase the C/N ratio was required to get sufficient denitrification. During the winter period with temperature less than $10^{\circ}C$, the denitrification efficiency was dropped rapidly even with a high TKN concentration (1,500 mg/L). This indicates that unit reactors (anoxic/aerobic tanks) for winter need to be installed to increase the hydraulic retention time. Thus, to enhance nitrification and denitrification efficiencies, flexible operations with seasons are recommended for nitrification/anoxic/denitrification tanks.

Thermal-hydraulic Design of A Printed-Circuit Steam Generator for Integral Reactor (일체형원자로 인쇄기판형 증기발생기 열수력학적 설계)

  • Kang, Han-Ok;Han, Hun Sik;Kim, Young-In
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.77-83
    • /
    • 2014
  • The vessel of integral reactor contains its major primary components such as the fuel and core, pumps, steam generators, and a pressurizer, so its size is proportional to the required space for the installation of each component. The steam generators take up the largest volume of internal space of reactor vessel and their volumes is substantial for the overall size of reactor vessel. Reduction of installation space for steam generators can lead to much smaller reactor vessel with resultant decrease of overall cost for the components and related facilities. A printed circuit heat exchanger is one of the compact types of heat exchangers available as an alternative to conventional shell and tube heat exchangers. Its name is derived from the procedure used to manufacture the flat metal plates that form the core of the heat exchanger, which is done by chemical milling. These plates are then stacked and diffusion bonded, converting the plates into a solid metal block containing precisely engineered fluid flow passages. The overall heat transfer area and pressure drops are evaluated for the steam generator based on the concept of the printed circuit heat exchanger in this study. As the printed circuit heat exchanger is known to have much larger heat transfer area density per unit volume, we can expect significantly reduced steam generator compared to former shell and tube type of steam generator. For the introduction of new steam generator, two design requirements are considered: flow area ratio between primary and secondary flow paths, and secondary side parallel channel flow oscillation. The results show that the overall volume of the steam generator can be significantly reduced with printed circuit type of steam generator.

Design and Analysis of Gerotor with Generalized Shapes for Power-Steering Units (파워 스티어링 유닛용 일반형상 제로터의 설계 및 해석)

  • Jeong, Jae-Tack;Shin, Soo-Sik;Kim, Kap-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.891-896
    • /
    • 2010
  • A gerotor is used in power-steering units (PSUs) as well as in hydraulic motors or pumps. The inner rotor is developed on the basis of the shape of the outer rotor tooth, which normally has one arc. The method of generating inner rotor on the basis of a generalized shape of outer rotor is analyzed with a view to improve PSU characteristics. An arc-shaped outer rotor with two curvatures was used in the analysis; design parameters such as the shape and curvature of the inner rotor, the flow rate of the gerotor, the position of contact point, and slip velocity are calculated, and these results are shown. This analysis enables us to develop a new design of compact PSUs.

Characterization of Acousto-ultrasonic Signals for Stamping Tool Wear (프레스 금형 마모에 대한 음-초음파 신호 특성 분석)

  • Kim, Yong-Yun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.386-392
    • /
    • 2009
  • This paper reports on the research which investigates acoustic signals acquired in progressive compressing, hole blanking, shearing and burr compacting process. The work piece is the head pin of the electric connector, whose raw material is the preformed steel bar. An acoustic sensor was set on the bed of hydraulic press. Because the acquired signals include the dynamic characteristics generated for all the processes, it is required to investigate signal characteristics corresponding to unit process. The corresponding dynamic characteristics to the respective process were first studied by analyzing the signals respectively acquired from compressing, blanking and compacting process. The combined signals were then periodically analyzed from the grinding to the grinding in the sound frequency domain and in the ultrasonic wave. The frequency of around 9 kHz in the sound frequency domain was much correlated to the tool wear. The characteristic frequency in the acoustic emission domain between 100 kHz and 500 kHz was not only clearly observed right after tool grinding but its amplitude was also related to the wear. The frequency amplitudes of 160 kHz and 320 kHz were big enough to be classified by the noise. The noise amplitudes are getting bigger, and their energy was much bigger as coming to the next regrinding. The signal analysis was based on the real time data and its frequency spectrum by Fourier Transform. As a result, the acousto-ultrasonic signals were much related to the tool wear progression.