• Title/Summary/Keyword: Hydraulic power system

Search Result 817, Processing Time 0.03 seconds

The Assembly and Test of Pressure Vessel for Irradiation (조사시험용 압력용기의 조립 및 시험)

  • Park, Kook-Nam;Lee, Jong-Min;Youn, Young-Jung;June, Hyung-Kil;Ahn, Sung-Ho;Lee, Kee-Hong;Kim, Young-Ki;Kennedy, Timothy C.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.179-184
    • /
    • 2009
  • The Fuel Test Loop(FTL) which is capable of an irradiation testing under a similar operating condition to those of PWR(Pressurized Water Reactor) and CANDU(CANadian Deuterium Uranium reactor) nuclear power plants has been developed and installed in HANARO, KAERI(Korea Atomic Energy Research Institute). It consists of In-Pile Section(IPS) and Out-of Pile System(OPS). The IPS, which is located inside the pool is divided into 3-parts; the in-pool pipes, the IVA(IPS Vessel Assembly) and the support structures. The test fuel is loaded inside a double wall, inner pressure vessel and outer pressure vessel, to keep the functionality of the reactor coolant pressure boundary. The IVA is manufactured by local company and the functional test and verification were done through pressure drop, vibration, hydraulic and leakage tests. The brazing technique for the instrument lines has been checked for its functionality and performance. An IVA has been manufactured by local technique and have finally tested under high temperature and high pressure. The IVA and piping did not experience leakage, as we have checked the piping, flanges, assembly parts. We have obtained good data during the three cycle test which includes a pressure test, pressure and temperature cycling, and constant temperature.

A Case Study on Tensile Behavior Characteristics of Long-length Rockbolt for Anchoring Systems (장대록볼트 정착방식에 따른 인발거동특성 사례연구)

  • Han, Sang-Hyun;Yea, Geu-Guwen
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.65-73
    • /
    • 2007
  • Recently, large-scale underground cavern such as underground hydraulic-power plant tend to be constructed very largely, so long-length rock bolt are generally used to support the huge plastic zone. However, problems fur bend-ing shape of the long-length steel bar and the bonding effects of anchoring systems are caused during the construction of the long-length rock bolt. In this study, field pull-out test for long-length rock bolt are carried out to estimate the most efficient anchoring system among the saw-toothed shape, grooved shape and smoothed shape with each 6 shells for 5.0m, 7.5m, 10.0m, 15.0m length. The axial load and axial displacement are measured with each load stage and than test results are analyzed to evaluate the behavior characteristics for each anchoring systems of long-length rock bolt. Also, the improvements of anchoring systems are proposed and discussed in this paper.

A Study of Weldability for Pure Titanium by Nd:YAG Laser(IV) - Lap Welding and Application for Heat Exchanger - (순티타늄판의 Nd:YAG 레이저 용접성에 관한 연구(IV) - 겹치기 용접 및 실물 열교환기로의 적용 -)

  • Kim, Jong-Do;Kwak, Myung-Sub;Lee, Chang-Je;Kil, Byung-Lea
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.66-71
    • /
    • 2010
  • With large specific strength and outstanding corrosion resistance and erosion resistance in sea water, titanium and titanium alloy are widely used in heat exchanger production. In particular, pure titanium demonstrates outstanding molding performance and may be considered optimal for production of heat exchanger. Since titanium is very vulnerable to oxidation and embrittlement during welding, processes with less heat input are widely used, and laser welding is widely applied by considering production performance and shield etc in atmosphere. So far, 1st report and 2nd report compared and analyzed embrittlement degrees by bead colors of weldment through oxygen and nitrogen quantitative analysis and hardness measurement, and evaluated welding performance and mechanical properties of butt welding. This study evaluated field applicability of lap welding to heat exchange plate of LPG re-liquefaction device for ships through tensile stress test, hardness test and internal pressure test etc after deducing optimal weding condition and applying to actual heat exchange plate. In bead overlap area, the experiment produced sound welds with no porosity or defect by increasing and decreasing laser power, and tensile-shear test results indicated virtually the same tension and yield strength as base metal. As a result of measuring hardness at lateral cross section and bead overlap zone of actual heat exchanger welds, hardness difference within 20Hv was produced at base metal, HAZ and weldment, and as a result of pneumatic and hydraulic pressure test, no leakage occurred.

A Systems Engineering Approach to Predict the Success Window of FLEX Strategy under Extended SBO Using Artificial Intelligence

  • Alketbi, Salama Obaid;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.97-109
    • /
    • 2020
  • On March 11, 2011, an earthquake followed by a tsunami caused an extended station blackout (SBO) at the Fukushima Dai-ichi NPP Units. The accident was initiated by a total loss of both onsite and offsite electrical power resulting in the loss of the ultimate heat sink for several days, and a consequent core melt in some units where proper mitigation strategies could not be implemented in a timely fashion. To enhance the plant's coping capability, the Diverse and Flexible Strategies (FLEX) were proposed to append the Emergency Operation Procedures (EOPs) by relying on portable equipment as an additional line of defense. To assess the success window of FLEX strategies, all sources of uncertainties need to be considered, using a physics-based model or system code. This necessitates conducting a large number of simulations to reflect all potential variations in initial, boundary, and design conditions as well as thermophysical properties, empirical models, and scenario uncertainties. Alternatively, data-driven models may provide a fast tool to predict the success window of FLEX strategies given the underlying uncertainties. This paper explores the applicability of Artificial Intelligence (AI) to identify the success window of FLEX strategy for extended SBO. The developed model can be trained and validated using data produced by the lumped parameter thermal-hydraulic code, MARS-KS, as best estimate system code loosely coupled with Dakota for uncertainty quantification. A Systems Engineering (SE) approach is used to plan and manage the process of using AI to predict the success window of FLEX strategies under extended SBO conditions.

Experimental Investigation of Water Discharge Capability According to Shape of Sluice for Tidal Power Generation - I. Physical Experiment (조력발전용 수문 형상에 따른 통수성능에 관한 실험적 연구 - I. 수리모형실험)

  • Lee, Dal-Soo;Oh, Sang-Ho;Yi, Jin-Hak;Park, Woo-Sun;Cho, Hyu-Sang;Kim, Duk-Gu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.73-80
    • /
    • 2008
  • An hydraulic experiment was carried out in an open channel flume in order to improve the technique of designing shape of the sluice used for tidal power generation, which greatly affects the economical efficiency of the construction of a tidal power plant. To predict the influence of change in the major design parameters relating to the sluice shape on the water discharge capability of the sluice, it was necessary to perform a precise experiment that is discriminated to previous feasibility studies or design projects. For this purpose, by installing various flow straighteners and rectifying structures inside the water supply system and the rectifying tank, the flow in the flume was stabilized as tranquil as possible. In addition, the measuring instruments and the location of installing them were carefully determined so as to minimize the errors intervened during the measurement of water discharge and water level. The method of estimating head difference between upstream and downstream of the sluice was also developed by taking account of the head loss due to the friction at the bottom and side walls in the flume.

Model-based Design and Verification of High-lift Control System Using a Performance Analysis Model (성능해석 모델을 활용한 고양력 제어시스템의 모델기반 설계 및 검증)

  • Cho, Hyunjun;Kim, Taeju;Kim, Eunsoo;Kim, Sangbeom;Lee, Joonwon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.2
    • /
    • pp.49-62
    • /
    • 2022
  • The purpose of this paper was to present a model analysis-based design process and verification results for the high-lift control system of aircraft. For this, we used Matlab/Simulink, one of the most widely-used physical modeling tools. The high-lift control system can be divided into three domains. (i.e., Electronic control domain, Hydraulic actuation domain, and Mechanical power transmission domain) Based on this division, we modeled each of the major domains and sub-components, and integrated them to complete the complicated system model. During the development process, each model block was tuned by referring to the results of pre-test and parts acceptance tests. As a result, the entire performance model and the developed system were completely verified, through unit components and system integrated performance tests. Finally, we summarize the process and results applied to the design process of high-lift control system and present future work.

Analysis of Coefficiency According to Blade rpm Change in Tidal Current Power Generation System (조류발전 시스템 내 블레이드 회전수 변화에 따른 효율 특성 분석)

  • Lee, Uk Jae;Han, Seok Jong;Bak, Da In;Jeong, Shin Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.314-319
    • /
    • 2019
  • The numerical simulation method was used to analyze the flow velocity change and mechanical coefficient characteristics of the blade in the shroud system that changes with the initial flow velocity and the blade rpm. In the analysis condition, the initial flow velocity was varied from 0.35 m/s to 1.0 m/s, and the blade rpm varied from 50 rpm to 300 rpm. Through this, the mechanical coefficient was estimated. The flow velocity changes tended to increase more than 1.8 times at the middle point compared to the inlet. When the flow velocity ratio was 0.75 m/s compared to the initial flow velocity of 0.5 m/s, the flow velocity ratio decreased. The mechanical coefficient using the torque of the blade also showed the highest coefficient at 0.5 m/s, and the trends were similar. On the other hand, the maximum coefficient was estimated to be about 20.88% in TSR 4.77 when the initial flow velocity was 0.5 m/s. The mechanical coefficient analysis of blades in this study is expected to provide the basic data for hydraulic model experimental.

Numerical Study of the Heat Removal Performance for a Passive Containment Cooling System using MARS-KS with a New Empirical Correlation of Steam Condensation (새로운 응축열전달계수 상관식이 적용된 MARS-KS를 활용한 원자로건물 피동냉각계통 열제거 성능의 수치적 연구)

  • Jang, Yeong-Jun;Lee, Yeon-Gun;Kim, Sin;Lim, Sang-Gyu
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.27-35
    • /
    • 2018
  • The passive containment cooling system (PCCS) has been designed to remove the released decay heat during the accident by means of the condensation heat transfer phenomenon to guarantee the safety of the nuclear power plant. The heat removal performance of the PCCS is mainly governed by the condensation heat transfer of the steam-air mixture. In this study, the heat removal performance of the PCCS was evaluated by using the MARS-KS code with a new empirical correlation for steam condensation in the presence of a noncondensable gas. A new empirical correlation implemented into the MARS-KS code was developed as a function of parameters that affect the condensation heat transfer coefficient, such as the pressure, the wall subcooling, the noncondensable gas mass fraction and the aspect ratio of the condenser tube. The empirical correlation was applied to the MARS-KS code to replace the default Colburn-Hougen model. The various thermal-hydraulic parameters during the operation of the PCCS follonwing a large-break loss-of-coolant-accident were analyzed. The transient pressure behavior inside the containment from the MARS-KS with the empirical correlation was compared with calculated with the Colburn-Hougen model.

High-efficiency deep geological repository system for spent nuclear fuel in Korea with optimized decay heat in a disposal canister and increased thermal limit of bentonite

  • Jongyoul Lee;Kwangil Kim;Inyoung Kim;Heejae Ju;Jongtae Jeong;Changsoo Lee;Jung-Woo Kim;Dongkeun Cho
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1540-1554
    • /
    • 2023
  • To use nuclear energy sustainably, spent nuclear fuel, classified as high-level radioactive waste and inevitably discharged after electricity generation by nuclear power plants, must be managed safely and isolated from the human environment. In Korea, the land area is limited and the amount of high-level radioactive waste, including spent nuclear fuels to be disposed, is relatively large. Thus, it is particularly necessary to maximize disposal efficiency. In this study, a high-efficiency deep geological repository concept was developed to enhance disposal efficiency. To this end, design strategies and requirements for a high-efficiency deep geological repository system were established, and engineered barrier modules with a disposal canister for pressurized water reactor (PWR)-type and pressurized heavy water reactor type Canada deuterium uranium (CANDU) plants were developed. Thermal and structural stability assessments were conducted for the repository system; it was confirmed that the system was suitable for the established strategies and requirements. In addition, the results of the nuclear safety assessment showed that the radiological safety of the new system met the Korean safety standards for disposal of high-level radioactive waste in terms of radiological dose. To evaluate disposal efficiency in terms of the disposal area, the layout of the developed disposal areas was assessed in terms of thermal limits. The estimated disposal areas were 2.51 km2 and 1.82 km2 (existing repository system: 4.57 km2) and the excavated host rock volumes were 2.7 Mm3 and 2.0 Mm3 (existing repository system: 4.5 Mm3) for thermal limits of 100 ℃ and 130 ℃, respectively. These results indicated that the area and the excavated volume of the new repository system were reduced by 40-60% compared to the existing repository system. In addition, methods to further improve the efficiency were derived for the disposal area for deep geological disposal of spent nuclear fuel. The results of this study are expected to be useful in establishing a national high-level radioactive waste management policy, and for the design of a commercial deep geological repository system for spent nuclear fuels.

Slope Stability Analysis of New Gabion Wall System with Vegetation Base Materials for Stream Bank Stability and Rehabilitation (계안 복원을 위한 식생기반재 돌망태 옹벽의 계안 안정효과 분석)

  • Choi, Hyung Tae;Jeong, Yong-Ho;Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.1
    • /
    • pp.130-137
    • /
    • 2012
  • This study has conducted to develop new gabion wall systems with vegetation base materials for stream bank stability and rapid rehabilitation. Vegetation base materials are primarily compounded with fine soil, organic composts and peat moss as plant fibers, a water retainer and a soil improver. Normally gabion wall systems resist the lateral earth pressures or stream power by their own weight. Therefore, fill material must have suitable weight, compressive strength and durability to resist the loading, as well as the effects of water and weathering. In this project, 100 to 200-mm clean, hard stones are basically specified, and about 50-mm rubbles are also used. Test application of new gabion wall system carried out in the stream bank of a small stream in the Gwangreung experimental forest, belonging to Korea Forest Research Institute (KFRI) in December 16th, 2006. As a result of the analysis of hydraulic stability of new gabion wall system, gabion wall system has highest threshold shear stress when the gabion wall covered by vegetation. New gabion wall system is highly resistant to sliding and overturning because safety coefficients exceed 1.5. As a result of term of slope stability analysis of new gabion wall system by Bishop and Fellenius methods, stability of stream bank was highly increased after the construction of gabion wall. Therefore, new gabion wall system is effective to stabilize unstable stream bank.